Multi-step Multi-camera View Planning for Real-Time Visual Object Tracking

  • Benjamin Deutsch
  • Stefan Wenhardt
  • Heinrich Niemann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4174)


We present a new method for planning the optimal next view for a probabilistic visual object tracking task. Our method uses a variable number of cameras, can plan an action sequence several time steps into the future, and allows for real-time usage due to a computation time which is linear both in the number of cameras and the number of time steps. The algorithm can also handle object loss in one, more or all cameras, interdependencies in the camera’s information contribution, and variable action costs.

We evaluate our method by comparing it to previous approaches with a prerecorded sequence of real world images.


View Planning Object Tracking State Probability Distribution Observation Function Calibration Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Paletta, L., Pinz, A.: Active object recognition by view integration and reinforcement learning. Robotics and Autonomous Systems 31(1-2), 71–86 (2000)CrossRefGoogle Scholar
  2. 2.
    Denzler, J., Brown, C.: Information Theoretic Sensor Data Selection for Active Object Recognition and State Estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 145–157 (2002)CrossRefGoogle Scholar
  3. 3.
    Deinzer, F., Denzler, J., Niemann, H.: Viewpoint Selection – Planning Optimal Sequences of Views for Object Recognition. In: Petkov, N., Westenberg, M.A. (eds.) CAIP 2003. LNCS, vol. 2756, pp. 65–73. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Fayman, J., Sudarsky, O., Rivlin, E., Rudzsky, M.: Zoom tracking and its applications. Machine Vision and Applications 13, 25–37 (2001)CrossRefGoogle Scholar
  5. 5.
    Tordoff, B., Murray, D.: Reactive zoom control while tracking using an affine camera. In: Proc. 12th British Machine Vision Conference, September 2001, vol. 1, pp. 53–62 (2001)Google Scholar
  6. 6.
    Micheloni, C., Foresti, G.L.: Zoom on Target While Tracking. In: Proceedings of the International Conference on Image Processing, Genua, Italy, vol. 3, pp. 117–120 (2005)Google Scholar
  7. 7.
    Kalandros, M.K., Pao, L.Y., Ho, Y.: Randomization and super-heuristics in choosing sensor sets in target tracking applications. In: Proc. IEEE Conf. Decision and Control, Phoenix, AZ, pp. 1803–1808 (1999)Google Scholar
  8. 8.
    Denzler, J., Zobel, M., Niemann, H.: Information Theoretic Focal Length Selection for Real-Time Active 3-D Object Tracking. In: International Conference on Computer Vision, Nice, France, pp. 400–407 (2003)Google Scholar
  9. 9.
    Deutsch, B., Zobel, M., Denzler, J., Niemann, H.: Multi-step entropy based sensor control for visual object tracking. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 359–366. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Deutsch, B., Deinzer, F., Zobel, M., Denzler, J.: Multi-Step Active Object Tracking with Entropy Based Optimal Actions Using the Sequential Kalman Filter. In: Araújo, H., Vieira, A., Braz, J., Encarnação, B., Carvalho, M. (eds.) Proceedings of the International Conference on Image Processing, Setúbal, Portugal, vol. 2, pp. 169–176. INSTICC Press, Setúbal (2005)Google Scholar
  11. 11.
    Kalman, R.: A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 35–44 (1960)Google Scholar
  12. 12.
    Chui, C.K., Chen, G.: Kalman Filtering. Springer, Heidelberg (1991)MATHGoogle Scholar
  13. 13.
    Bar-Shalom, Y., Fortmann, T.: Tracking and Data Association. Academic Press, Boston (1988)MATHGoogle Scholar
  14. 14.
    Pérez, P., Hue, C., Vermaak, J., Gangnet, M.: Color-based probabilistic tracking. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 661–675. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Törn, A., Žilinskas, A.: Global Optimization. LNCS, vol. 350. Springer, Heidelberg (1989)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Benjamin Deutsch
    • 1
  • Stefan Wenhardt
    • 1
  • Heinrich Niemann
    • 1
  1. 1.Chair for Pattern RecognitionUniversity of Erlangen-Nuremberg 

Personalised recommendations