3D Human Motion Sequences Synchronization Using Dense Matching Algorithm

  • Mikhail Mozerov
  • Ignasi Rius
  • Xavier Roca
  • Jordi González
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4174)


This work solves the problem of synchronizing pre-recorded human motion sequences, which show different speeds and accelerations, by using a novel dense matching algorithm. The approach is based on the dynamic programming principle that allows finding an optimal solution very fast. Additionally, an optimal sequence is automatically selected from the input data set to be a time scale pattern for all other sequences. The synchronized motion sequences are used to learn a model of human motion for action recognition and full-body tracking purposes.


Action Recognition Human Motion Training Sequence Motion Sequence Human Posture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brown, M.Z., Burschka, D., Hager, G.D.: Advances in computational stereo. IEEE Trans. Pattern Analysis and Machine Intelligence 25, 993–1008 (2003)CrossRefGoogle Scholar
  2. 2.
    González, J., Varona, J., Roca, F.X., Villanueva, J.J.: Analysis of Human Walking Based on aSpaces. In: Perales, F.J., Draper, B.A. (eds.) AMDO 2004. LNCS, vol. 3179, pp. 177–188. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Grochow, K., Martin, S.L., Hertzmann, A., Popovic, Z.: Style-based inverse kinematics. In: ACM Transactions on Graphics (Proc. of SIGGRAPH 2004), vol. 23, pp. 522–531 (2004)Google Scholar
  4. 4.
    Moeslund, T.B., Granum, E.: A survey of computer vision-based human motion capture. Computer Vision and Image Understanding 81, 231–268 (2001)MATHCrossRefGoogle Scholar
  5. 5.
    Nakazawa, A., Nakaoka, S., Ikeuchi, K.: Matching and blending human motions using temporal scaleable dynamic programming. In: Proc. of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 287–294 (2004)Google Scholar
  6. 6.
    Ning, H., Tan, T., Wang, L., Hu, W.: Kinematics-based tracking of human walking in monocular video sequences. Image and Vision Computing 22, 429–441 (2004)CrossRefGoogle Scholar
  7. 7.
    Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision 47, 7–42 (2002)MATHCrossRefGoogle Scholar
  8. 8.
    Sidenbladh, H., Black, M.J., Sigal, L.: Implicit Probabilistic Models of Human Motion for Synthesis and Tracking. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 784–800. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Urtasun, R., Fleet, D.J., Hertzmann, A., Fua, P.: Priors for people tracking from small training sets. In: Proc. IEEE International Conference on Computer Vision (ICCV 2005), vol. 1, pp. 403–410 (2005)Google Scholar
  10. 10.
    Wang, L., Hu, W., Tan, T.: Recent developments in human motion analysis. Pattern Recognition 36, 585–601 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mikhail Mozerov
    • 1
  • Ignasi Rius
    • 1
  • Xavier Roca
    • 1
  • Jordi González
    • 2
  1. 1.Computer Vision Center and Departament d’Informàtica Universitat Autònoma de BarcelonaCerdanyolaSpain
  2. 2.Institut de Robòtica i Informàtica Industrial (UPC-CSIC)Spain

Personalised recommendations