Skip to main content

On-Line Variational Estimation of Dynamical Fluid Flows with Physics-Based Spatio-temporal Regularization

  • Conference paper
Pattern Recognition (DAGM 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4174))

Included in the following conference series:

Abstract

We present a variational approach to motion estimation of instationary fluid flows. Our approach extends prior work along two directions: (i) The full incompressible Navier-Stokes equation is employed in order to obtain a physically consistent regularization which does not suppress turbulent flow variations. (ii) Regularization along the time-axis is employed as well, but formulated in a receding horizon manner contrary to previous approaches to spatio-temporal regularization. This allows for a recursive on-line (non-batch) implementation of our estimation framework.

Ground-truth evaluations for simulated turbulent flows demonstrate that due to imposing both physical consistency and temporal coherency, the accuracy of flow estimation compares favourably even with optical flow approaches based on higher-order div-curl regularization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Braess, D.: Finite elements. Theory, fast solver & appl. in solid mechanics. Springer, Heidelberg (1997)

    Google Scholar 

  2. Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. Springer, New York (1991)

    MATH  Google Scholar 

  3. Carlier, J., Heitz, D.: 2D turbulence sequence provided by Cemagref within the European Project Fluid Image Analysis and Description

    Google Scholar 

  4. Corpetti, Th., Heitz, D., Arroyo, G., Mémin, E., Santa-Cruz, A.: Fluid experimental flow estimation based on an optical-flow scheme. Exp. Fluids 40(1), 80–97 (2005)

    Article  Google Scholar 

  5. Fortin, M., Glowinski, R.: Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-value Problems. North-Holland, Amsterdam (1983)

    MATH  Google Scholar 

  6. Hackbusch, W.: Iterative Solution of Large Sparse Systems of Equations. AMS, vol. 95. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  7. Horn, B., Schunck, B.: Determining optical flow. Art. Intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  8. Kawamura, T., Hiwada, M., Hibino, T., Mabuchi, I., Kumada, M.: Flow around a finite circular cylinder on a flat plate. Bulletin of the JSME 27(232), 2142–2151 (1984)

    Google Scholar 

  9. Kohlberger, T., Mémin, E., Schnörr, C.: Variational dense motion estimation using the helmholtz decomposition. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 432–448. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Okamoto, K., Nishio, S., Kobayashi, T.: Standard images for particle-image velocimetry. Meas. Sci. Technol. 11, 685–691 (2000)

    Article  Google Scholar 

  11. Puckett, E.G., Colella, P.: Finite Difference Methods for Computational Fluid Dynamics (Cambridge Texts in Applied Mathematics). Cambridge University Press, Cambridge (2005)

    Google Scholar 

  12. Raffel, M., Willert, C., Kompenhans, J.: Particle Image Velocimetry. Springer, Heidelberg (2001)

    Google Scholar 

  13. Ruhnau, P., Gütter, C., Schnörr, C.: A variational approach for particle tracking velocimetry. Meas. Sci. Technol. 16(7), 1449–1458 (2005)

    Article  Google Scholar 

  14. Ruhnau, P., Kohlberger, T., Nobach, H., Schnörr, C.: Variational optical flow estimation for particle image velocimetry. Exp. Fluids 38, 21–32 (2005)

    Article  Google Scholar 

  15. Ruhnau, P., Schnörr, C.: Optical stokes flow: An imaging based control approach. Exp. Fluids (submitted, 2006)

    Google Scholar 

  16. Stahl, A., Ruhnau, P., Schnörr, C.: A distributed-parameter approach to dynamic image motion. In: Int. Workshop on The Repres. and Use of Prior Knowl. in Vision. LNCS. Springer, Heidelberg (2006)

    Google Scholar 

  17. Suter, D.: Mixed finite elements and whitney forms in visual reconstruction. In: Geometric Methods in Computer Vision II, pp. 51–62 (1993)

    Google Scholar 

  18. Suter, D.: Mixed-finite element based motion est. Innov. Tech. Biol. Med. 15(3) (1994)

    Google Scholar 

  19. Yuan, J., Ruhnau, P., Mémin, E., Schnörr, C.: Discrete Orthogonal Decomposition and Variational Fluid Flow Estimation. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 267–278. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ruhnau, P., Stahl, A., Schnörr, C. (2006). On-Line Variational Estimation of Dynamical Fluid Flows with Physics-Based Spatio-temporal Regularization. In: Franke, K., Müller, KR., Nickolay, B., Schäfer, R. (eds) Pattern Recognition. DAGM 2006. Lecture Notes in Computer Science, vol 4174. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11861898_45

Download citation

  • DOI: https://doi.org/10.1007/11861898_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44412-1

  • Online ISBN: 978-3-540-44414-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics