Wavelet Based Noise Reduction by Identification of Correlations

  • Anja Borsdorf
  • Rainer Raupach
  • Joachim Hornegger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4174)


In this paper we present a novel wavelet based method for edge preserving noise reduction. In contrast to most common methods, the algorithm introduced here does not work on single input data. It takes two or more spatially identical images, which are both impaired by noise. Assuming the statistical independence of noise in the different images, correlation computations can be used in order to preserve structures while reducing noise. Different methods for correlation analysis have been investigated, on the one hand based directly on the original input images and on the other hand taking into account the wavelet representation of the input data. The presented approach proves to be suited for the application in computed tomography, where high noise reduction rates of approximately 50% can be achieved without loss of structure information.


Input Image Noise Reduction Wavelet Transformation Difference Image Wavelet Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Catte, F., Lions, P.L., Morel, J.M., Coll, T.: Image selective smoothing and edge-detection by nonlinear diffusion. SIAM Journal on Numerical Analysis 29, 182–193 (1992)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: IEEE International Conference on Computer Vision, Bombay, India, pp. 839–846 (1998), http://www.cse.ucsc.edu/~manduchi/Papers/ICCV98.pdf
  3. 3.
    Hubbard, B.: Wavelets: Die Mathematik der kleinen Wellen. Birkhäuser Verlag, Basel (1997)Google Scholar
  4. 4.
    Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 425–455 (1994)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Xu, Y., Weaver, J., Healy, D., Lu, J.: Wavelet transform domain filters: A spatially selective noise filtration technique. IEEE Transactions on Image Processing 3, 747–758 (1994)CrossRefGoogle Scholar
  6. 6.
    Faghih, F., Smith, M.: Combining spatial and scale-space techniques for edge detection to provide a spatially adaptive wavelet-based noise filtering algorithm. IEEE Transactions on Image Processing 11, 1062–1071 (2002)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Pizurica, A., Philips, W., Lemahieu, I., Acheroy, M.: A versatile wavelet domain noise filtration technique for medical imaging. IEEE Transactions on Image Processing 22, 1062–1071 (2003)Google Scholar
  8. 8.
    Hoeschen, C., Buhr, E., Tischenko, O.: Verfahren zur Reduktion von Rauschstrukturen in Arrays von Pixelwerten (2004) (Offenlegungsschrift DE10305221A1 2004.08.26)Google Scholar
  9. 9.
    Mallat, S.: A theory for multiresolution signal decomposition: The wavelet representation. IEEE Transactions on Pattern Analysis and Maschine Intelligence 11, 674–693 (1989)MATHCrossRefGoogle Scholar
  10. 10.
    Strang, G., Nguyen, T.: Wavelets and Filter Banks. Wellesley- Cambridge Press (1996)Google Scholar
  11. 11.
    Weisstein, E.: Correlation coefficient (2005), http://mathworld.wolfram.com/CorrelationCoefficient.html
  12. 12.
    Borsdorf, A.: Noise reduction in CT images by identification of correlations (2005)Google Scholar
  13. 13.
    Borsdorf, A., Raupach, R., Hornegger, J.: Reduction of quantum noise in CT-images by identification of correlations. In: Proceedings of the 2nd Russian-Bavarian Conference on Bio-Medical Engineering, Moskow (2006)Google Scholar
  14. 14.
    Getreuer, P.: Filter coefficients to popular wavelets (2005), http://www.mathworks.com

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Anja Borsdorf
    • 1
    • 2
  • Rainer Raupach
    • 1
    • 2
  • Joachim Hornegger
    • 1
    • 2
  1. 1.Institute of Pattern RecognitionFriedrich-Alexander-UniversityErlangen-Nuremberg
  2. 2.Siemens Medical SolutionsForchheim

Personalised recommendations