Advertisement

Sparse Patch-Histograms for Object Classification in Cluttered Images

  • Thomas Deselaers
  • Andre Hegerath
  • Daniel Keysers
  • Hermann Ney
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4174)

Abstract

We present a novel model for object recognition and detection that follows the widely adopted assumption that objects in images can be represented as a set of loosely coupled parts. In contrast to former models, the presented method can cope with an arbitrary number of object parts. Here, the object parts are modelled by image patches that are extracted at each position and then efficiently stored in a histogram. In addition to the patch appearance, the positions of the extracted patches are considered and provide a significant increase in the recognition performance. Additionally, a new and efficient histogram comparison method taking into account inter-bin similarities is proposed. The presented method is evaluated for the task of radiograph recognition where it achieves the best result published so far. Furthermore it yields very competitive results for the commonly used Caltech object detection tasks.

Keywords

Object Recognition Training Image Image Patch Object Part Automatic Image Annotation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Opelt, A., Pinz, A., Fussenegger, M., Auer, P.: Generic object recognition with boosting  28(3), 416–431 (2006)Google Scholar
  2. 2.
    Fergus, R., Perona, P., Zisserman, A.: A sparse object category model for efficient learning and exhaustive recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2005), pp. 380–389 (2005)Google Scholar
  3. 3.
    Ulusoy, I., Bishop, C.M.: Generative versus discriminative methods for object recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2005), pp. 258–265 (2005)Google Scholar
  4. 4.
    Marée, R., Geurts, P., Piater, J., Wehenkel, L.: Random subwindows for robust image classification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 34–40 (2005)Google Scholar
  5. 5.
    Deselaers, T., Keysers, D., Ney, H.: Discriminative training for object recognition using image patches. In: IEEE Conference on Computer Vision and Pattern Recognition, San Diego, CA, vol. 2, pp. 157–162 (2005)Google Scholar
  6. 6.
    Bosch, A., Zissermann, A., Muñoz, X.: Scene Classification Via pLSA. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 517–530. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Shotton, J., Winn, J., Rother, C., Criminisi, A.: TextonBoost: Joint Appearance, Shape and Context Modeling for Multi-class Object Recognition and Segmentation. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 1–15. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Fergus, R., Perona, P., Zissermann, A.: Object class recognition by unsupervised scale-invariant learning. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2003), Blacksburg, VG, pp. 264–271 (2003)Google Scholar
  9. 9.
    Leibe, B., Schiele, B.: Scale-Invariant Object Categorization Using a Scale-Adaptive Mean-Shift Search. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 145–153. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Linde, O., Lindberg, T.: Object recognition using composed recpetive field histograms of higher dimensionality. In: International Conference on Pattern Recognition, Cambridge, UK (2004)Google Scholar
  11. 11.
    Deselaers, T., Keysers, D., Ney, H.: Improving a Discriminative Approach to Object Recognition Using Image Patches. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 326–333. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Puzicha, J., Rubner, Y., Tomasi, C., Buhmann, J.: Empirical evaluation of dissimilarity measures for color and texture. In: International Conference on Computer Vision, Corfu, Greece, vol. 2, pp. 1165–1173 (1999)Google Scholar
  13. 13.
    Keysers, D., Gollan, C., Ney, H.: Local context in non-linear deformation models for handwritten character recognition. In: International Conference on Pattern Recognition, Cambridge, UK, vol. 4, pp. 511–514 (2004)Google Scholar
  14. 14.
    Jeon, J., Manmatha, R.: Using maximum entropy for automatic image annotation. In: Enser, P.G.B., Kompatsiaris, Y., O’Connor, N.E., Smeaton, A.F., Smeulders, A.W.M. (eds.) CIVR 2004. LNCS, vol. 3115, pp. 24–32. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Darroch, J.N., Ratcliff, D.: Generalized iterative scaling for log-linear models. Annals of Mathematical Statistics 43(5), 1470–1480 (1972)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)MATHGoogle Scholar
  17. 17.
    Clough, P., Müller, H., Deselaers, T., Grubinger, M., Lehmann, T.M., Jensen, J., Hersh, W.R.: The CLEF 2005 cross–language image retrieval track. In: Peters, C., Gey, F.C., Gonzalo, J., Müller, H., Jones, G.J.F., Kluck, M., Magnini, B., de Rijke, M., Giampiccolo, D. (eds.) CLEF 2005. LNCS, vol. 4022, pp. 535–557. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Zhang, W., Yu, B., Zelinsky, G.J., Samaras, D.: Object class recognition using multiple layer boosting with heterogeneous features. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2005), pp. 323–330 (2005)Google Scholar
  19. 19.
    Deselaers, T., Keysers, D., Ney, H.: Classification error rate for quantitative evaluation of content-based image retrieval systems. In: International Conference on Pattern Recognition 2004, Cambridge, UK, vol. 2, pp. 505–508 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Thomas Deselaers
    • 1
  • Andre Hegerath
    • 1
  • Daniel Keysers
    • 1
  • Hermann Ney
    • 1
  1. 1.Human Language Technology and Pattern Recognition GroupRWTH Aachen UniversityAachenGermany

Personalised recommendations