Advertisement

A Modification of the Level Set Speed Function to Bridge Gaps in Data

  • Karsten Rink
  • Klaus Tönnies
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4174)

Abstract

Level set methods have become very popular means for image segmentation in recent years. But due to the data-driven nature of this methods it is difficult to segment objects that appear unconnected within the data. We propose a modification of the level set speed function to add a “bridging force” that allows the level set to leap over gaps in the data and segment an object despite artifacts or partial occlusions. We propose two methods to define such a force, one model-based and one image-based. Both versions have been applied to a series of test images, as well as medical data and photographic images to show their adequacy for image segmentation.

Keywords

Image Segmentation Test Image Curvature Term Speed Function Geodesic Active Contour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abu-Gharbieh, R., Gustavsson, T., Kaminski, C., Hamarneh, G.: Flame Front Matching and Tracking in PLIF Images using Geodesic Paths and Level Sets. In: IEEE Int. Conf. on Comp. Vis., Workshop on Variational and Level Set Methods in Comp. Vis., pp. 112–118 (2001)Google Scholar
  2. 2.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic Active Contours. Int. J. Comp. Vis. 22(1), 61–79 (1991)CrossRefGoogle Scholar
  3. 3.
    Deschamps, T.: Curve and Shape Extraction with Minimal Path and Level-Set techniques. Applications to 3D Medical Imaging. Ph.D. thesis. L’Univerité de Paris-Dauphine (2001)Google Scholar
  4. 4.
    McInerney, T., Terzopoulos, D., Hamarneh, G.: Deformable Organisms for Automatic Medical Image Analysis. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 66–76. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active Contour Models. Int. J. Comp. Vis. 1(4), 321–331 (1988)CrossRefGoogle Scholar
  6. 6.
    Malladi, R., Sethian, J.A.: Image Processing: Flows under Min/Max Curvature and Mean Curvature. Graph. Mod. and Image Proc. 58(2), 127–141 (1996)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Malladi, R., Sethian, J.A., Vemuri, B.: Shape Modelling with Front Propagation: A Level Set Approach. IEEE Trans. on PAMI 17(2), 158–175 (1995)Google Scholar
  8. 8.
    McInerney, T., Terzopoulos, D.: A Dynamic Finite Element Surface Model for Segmentation and Tracking in Multidimensional Medical Images with Application to Cardiac 4D Image Analysis. Comput. Med. Imaging Graph. 19(1), 69–83 (1995)CrossRefGoogle Scholar
  9. 9.
    Mulder, W., Osher, S.J., Sethian, J.A.: Computing Interface Motion in Compressible Gas Dynamics. J. Comp. Phys. 100, 209–228 (1992)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Osher, S., Sethian, J.A.: Fronts Propagating with Curvature Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulation. J. Comp. Phys. 79, 12–49 (1988)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Paragios, N., Deriche, R.: Geodesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects. IEEE Trans. on PAMI 22(3), 266–280 (2000)Google Scholar
  12. 12.
    Rink, K., Törsel, A.M., Tönnies, K.: Segmentation of the Vascular Tree in CT Data using Implicit Active Contours. In: Bildverarbeitung für die Medizin, pp. 136–140 (2006)Google Scholar
  13. 13.
    Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)MATHGoogle Scholar
  14. 14.
    Sethian, J.A., Popovici, A.M.: 3-D traveltime computation using the fast marching method. Geophysics 64(2), 516–523 (1999)CrossRefGoogle Scholar
  15. 15.
    Van Bemmel, C.M., et al.: A Level-Set-Based Artery-Vein Separation in Blood-Pool Agent CR-MR Angiograms. IEEE Trans. Med. Imag. 22(10), 1224–1234 (2003)CrossRefGoogle Scholar
  16. 16.
    Whitaker, R.T.: Isosurfaces and Level-Set Surface Models. Technical Report UUCS-02-010. School of Computing, Univ. of Utah (2002)Google Scholar
  17. 17.
    Young, S., Pekar, V., Weese, J.: Vessel Segmentation for Visualization of MRA with Blood Pool Contrast Agent. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 491–498. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Karsten Rink
    • 1
  • Klaus Tönnies
    • 1
  1. 1.Department of Simulation and GraphicsUniversity of MagdeburgGermany

Personalised recommendations