Advertisement

Beyond Cellular Automata, Towards More Realistic Traffic Simulators

  • Luís Correia
  • Thomas Wehrle
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4173)

Abstract

Cellular Automata (CA) have been used in traffic simulation, but in general with models that do not correspond to canonical CA. Here we analyse the differences and the implications of using CA or agent based simulations, with a particular focus on the updating procedures. A proposal for increased realism in traffic simulation is presented.

Keywords

Cellular Automaton Local Function Multiagent System Cellular Automaton Cellular Automaton Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Smith III, A.R.: Introductory survey to cellular automata and polyautomata theory. In: Lindenmayer, A., Rozenberg, G. (eds.) Automata, Languages and Development, May 21, 2001, North Holland Pub. Comp, Amsterdam (1976), revision of May 21, 2001Google Scholar
  2. 2.
    Schadschneider, A., Schreckenberg, M.: Cellular automaton models and traffic flow. J. Phys. A 26, L679 (1993)Google Scholar
  3. 3.
    Chopard, B., Luthi, P.O., Queloz, P.A.: Cellular automata model of car traffic in a two-dimensional street network. J. Phys. A: Math. Gen. 29, 2325–2336 (1996)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Nagel, K.: Particle hopping models and traffic flow theory. Physical Review E 53, 4655–4672 (1996)CrossRefGoogle Scholar
  5. 5.
    Dijkstra, J., Timmermans, H.J.P., Jessurun, J.: A multi-agent cellular automata system for visualising simulated pedestrian activity. In: ACRI, pp. 29–36 (2000)Google Scholar
  6. 6.
    Schadschneider, A.: Cellular automaton approach to pedestrian dynamics - theory (2001)Google Scholar
  7. 7.
    Nagel, K.: Cellular automata models for transportation applications. In: ACRI, pp. 20–31 (2002)Google Scholar
  8. 8.
    Knospe, W., Santen, L., Schadschneider, A., Schreckenberg, M.: An empirical test for cellular automaton models of traffic flow (2004)Google Scholar
  9. 9.
    Maerivoet, S., De Moor, B.: Cellular automata models of road traffic. Physics Reports 419, 1 (2005)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Hogeweg, P.: Cellular automata as a paradigm for ecological modeling. Applied Mathematics and Computation 27, 81–100 (1988)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Bandini, S., Manzoni, S., Simone, C.: Dealing with space in multi–agent systems: a model for situated mas. In: AAMAS 2002: Proceedings of the first international joint conference on Autonomous agents and multiagent systems, pp. 1183–1190. ACM Press, New York (2002)Google Scholar
  12. 12.
    Parker, D., Manson, S., Janssen, M., Hoffmann, M., Deadman, P.: Multiagent systems for the simulation of land-use and land-cover change: A review. Annals of the Association of American Geographers 93, 314–337 (2003)CrossRefGoogle Scholar
  13. 13.
    Hamagami, T., Hirata, H.: Method of crowd simulation by using multiagent on cellular automata. In: IAT, pp. 46–52 (2003)Google Scholar
  14. 14.
    Bandini, S., Federici, M.L., Vizzari, G.: A methodology for crowd modelling with situated cellular agents. In: WOA, pp. 91–98 (2005)Google Scholar
  15. 15.
    Hogeweg, P.: Locally synchronised developmental systems - conceptual advantages of discrete event formalism. International Journal of General Systems 6, 57–73 (1980)MATHCrossRefGoogle Scholar
  16. 16.
    Ingerson, T.E., Buvel, R.L.: Structure in asynchronous cellular automata. Physica D 10, 59–68 (1984)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Huberman, B.A., Glance, N.S.: Evolutionary games and computer simulations. Proc. Natl. Acad. Sci. USA, Evolution 90, 7716–7718 (1993)MATHCrossRefGoogle Scholar
  18. 18.
    Bersini, H., Detours, V.: Asynchrony induces stability in cellular automata based models. In: Brooks, R., Maes, P. (eds.) Artificial Life IV, pp. 382–387. MIT Press, Cambridge (1994)Google Scholar
  19. 19.
    Schönfisch, B., de Roos, A.: Synchronous and asynchronous updating in cellular automata. BioSystems 51, 123–143 (1999)CrossRefGoogle Scholar
  20. 20.
    Cornforth, D., Green, D.G., Newth, D., Kirley, M.: Do artificial ants in step? Ordered asynchronous processes and modularity in biological systems. In: Standish, Abbass, Bedau (eds.) Artificial Life VIII, pp. 28–32. MIT Press, Cambridge (2002)Google Scholar
  21. 21.
    Correia, L.: Self-organisation: a case for embodiement. In: Gershenson, C., Lenaerts, T. (eds.) Proceedings of the Workshop on the Evolution of Complexity, June 3, 2006, Bloomington, IN, USA (2006)Google Scholar
  22. 22.
    Krug, J., Spohn, H.: Universality classes for deterministic surface growth. Physical Review A 38, 4271–4283 (1988)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Rajewsky, N., Santen, L., Schadschneider, A., Schreckenberg, M.: The asymmetric exclusion process: Comparison of update procedures. Journal of Statistical Physics 92(1/2), 151–194 (1998)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Kanada, Y.: The effects of randomness in asynchronous 1D cellular automata. Technical report, Tsukuba Research Center (1997)Google Scholar
  25. 25.
    Correia, L.: Self-organised systems: fundamental properties. Revista de Ciências da Computação I (to appear, 2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Luís Correia
    • 1
    • 2
  • Thomas Wehrle
    • 3
  1. 1.LabMAgUniversity of LisbonLisboaPortugal
  2. 2.AI LabUniversity of ZurichZürichSwitzerland
  3. 3.Institute of PsychologyUniversity of ZurichZürichSwitzerland

Personalised recommendations