Directed Percolation Phenomena in Asynchronous Elementary Cellular Automata

  • Nazim Fatès
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4173)


Cellular automata are discrete dynamical systems that are widely used to model natural systems. Classically they are run with perfect synchrony ; i.e., the local rule is applied to each cell at each time step. A possible modification of the updating scheme consists in applying the rule with a fixed probability, called the synchrony rate. It has been shown in a previous work that varying the synchrony rate continuously could produce a discontinuity in the behaviour of the cellular automaton. This works aims at investigating the nature of this change of behaviour using intensive numerical simulations. We apply a two-step protocol to show that the phenomenon is a phase transition whose critical exponents are in good agreement with the predicted values of directed percolation.


Cellular Automaton Physical Review Universality Class Local Rule Discrete Dynamical System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adamatzky, A.: Computing in nonlinear media and automata collectives. Institute of Physics Publishing (2001), ISBN 075030751XGoogle Scholar
  2. 2.
    Berry, H.: Nonequilibrium phase transition in a self-activated biological network. Physical Review E (67), 31907 (2003)Google Scholar
  3. 3.
    Bersini, H., Detours, V.: Asynchrony induces stability in cellular automata based models. In: Brooks, R., Maes, A., Pattie (eds.) Proceedings of the 4th International Workshop on the Synthesis and Simulation of Living Systems (Artificial Life IV), July 1994, pp. 382–387. MIT Press, Cambridge (1994)Google Scholar
  4. 4.
    Blok, H.J., Bergersen, B.: Synchronous versus asynchronous updating in the “game of life”. Physical Review E 59, 3876–3879 (1999)CrossRefGoogle Scholar
  5. 5.
    Domany, E., Kinzel, W.: Equivalence of cellular automata to ising models and directed percolation. Physical Review Letters 53, 311–314 (1984)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Fatès, N., Morvan, M.: An experimental study of robustness to asynchronism for elementary cellular automata. Complex Systems 16, 1–27 (2005)MathSciNetGoogle Scholar
  7. 7.
    Fatès, N., Morvan, M., Schabanel, N., Thierry, É.: Fully asynchronous behavior of double-quiescent elementary cellular automata. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 316–327. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Fatès, N., Schabanel, N., Thierry, É., Regnault, D.: Asynchronous behavior of double-quiescent elementary cellular automata. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 455–466. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Gács, P.: Deterministic computations whose history is independent of the order of asynchronous updating (2003),
  10. 10.
    Grassberger, P.: Synchronization of coupled systems with spatiotemporal chaos. Physical Review E 59(3), R2520 (1999)Google Scholar
  11. 11.
    Hinrichsen, H.: Nonequilibrium Critical Phenomena and Phase Transitions into Absorbing States. Advances in Physics 49, 815–958 (2000)CrossRefGoogle Scholar
  12. 12.
    Louis, P.-Y.: Automates cellulaires probabilistes: mesures stationnaires, mesures de gibbs associées et ergodicité, Ph.D. thesis, Université des Sciences et Technologies de Lille (September 2002)Google Scholar
  13. 13.
    Morelli, L.G., Zanette, D.H.: Synchronization of stochastically coupled cellular automata. Physical Review E, R8–R11 (1998)Google Scholar
  14. 14.
    Buvel, R.L., Ingerson, T.E.: Structure in asynchronous cellular automata. Physica D 1, 59–68 (1984)MathSciNetGoogle Scholar
  15. 15.
    Roli, A., Zambonelli, F.: Emergence of macro spatial structures in dissipative cellular automata. In: Bandini, S., Chopard, B., Tomassini, M. (eds.) ACRI 2002. LNCS, vol. 2493, pp. 144–155. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Rouquier, J.-B.: Coalescing cellular automata. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3993, pp. 321–328. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Schönfisch, B., de Roos, A.: Synchronous and asynchronous updating in cellular automata. BioSystems 51, 123–143 (1999)CrossRefGoogle Scholar
  18. 18.
    Wolfram, S.: Universality and complexity in cellular automata. Physica D 10, 1–35 (1984)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Nazim Fatès
    • 1
  1. 1.LORIAUniversity NancyVandoeuvre-lès-NancyFrance

Personalised recommendations