Skip to main content

Directed Percolation Phenomena in Asynchronous Elementary Cellular Automata

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 4173)

Abstract

Cellular automata are discrete dynamical systems that are widely used to model natural systems. Classically they are run with perfect synchrony ; i.e., the local rule is applied to each cell at each time step. A possible modification of the updating scheme consists in applying the rule with a fixed probability, called the synchrony rate. It has been shown in a previous work that varying the synchrony rate continuously could produce a discontinuity in the behaviour of the cellular automaton. This works aims at investigating the nature of this change of behaviour using intensive numerical simulations. We apply a two-step protocol to show that the phenomenon is a phase transition whose critical exponents are in good agreement with the predicted values of directed percolation.

Keywords

  • Cellular Automaton
  • Physical Review
  • Universality Class
  • Local Rule
  • Discrete Dynamical System

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamatzky, A.: Computing in nonlinear media and automata collectives. Institute of Physics Publishing (2001), ISBN 075030751X

    Google Scholar 

  2. Berry, H.: Nonequilibrium phase transition in a self-activated biological network. Physical Review E (67), 31907 (2003)

    Google Scholar 

  3. Bersini, H., Detours, V.: Asynchrony induces stability in cellular automata based models. In: Brooks, R., Maes, A., Pattie (eds.) Proceedings of the 4th International Workshop on the Synthesis and Simulation of Living Systems (Artificial Life IV), July 1994, pp. 382–387. MIT Press, Cambridge (1994)

    Google Scholar 

  4. Blok, H.J., Bergersen, B.: Synchronous versus asynchronous updating in the “game of life”. Physical Review E 59, 3876–3879 (1999)

    CrossRef  Google Scholar 

  5. Domany, E., Kinzel, W.: Equivalence of cellular automata to ising models and directed percolation. Physical Review Letters 53, 311–314 (1984)

    CrossRef  MathSciNet  Google Scholar 

  6. Fatès, N., Morvan, M.: An experimental study of robustness to asynchronism for elementary cellular automata. Complex Systems 16, 1–27 (2005)

    MathSciNet  Google Scholar 

  7. Fatès, N., Morvan, M., Schabanel, N., Thierry, É.: Fully asynchronous behavior of double-quiescent elementary cellular automata. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 316–327. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  8. Fatès, N., Schabanel, N., Thierry, É., Regnault, D.: Asynchronous behavior of double-quiescent elementary cellular automata. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 455–466. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  9. Gács, P.: Deterministic computations whose history is independent of the order of asynchronous updating (2003), http://arXiv.org/abs/cs/0101026

  10. Grassberger, P.: Synchronization of coupled systems with spatiotemporal chaos. Physical Review E 59(3), R2520 (1999)

    Google Scholar 

  11. Hinrichsen, H.: Nonequilibrium Critical Phenomena and Phase Transitions into Absorbing States. Advances in Physics 49, 815–958 (2000)

    CrossRef  Google Scholar 

  12. Louis, P.-Y.: Automates cellulaires probabilistes: mesures stationnaires, mesures de gibbs associées et ergodicité, Ph.D. thesis, Université des Sciences et Technologies de Lille (September 2002)

    Google Scholar 

  13. Morelli, L.G., Zanette, D.H.: Synchronization of stochastically coupled cellular automata. Physical Review E, R8–R11 (1998)

    Google Scholar 

  14. Buvel, R.L., Ingerson, T.E.: Structure in asynchronous cellular automata. Physica D 1, 59–68 (1984)

    MathSciNet  Google Scholar 

  15. Roli, A., Zambonelli, F.: Emergence of macro spatial structures in dissipative cellular automata. In: Bandini, S., Chopard, B., Tomassini, M. (eds.) ACRI 2002. LNCS, vol. 2493, pp. 144–155. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  16. Rouquier, J.-B.: Coalescing cellular automata. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3993, pp. 321–328. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  17. Schönfisch, B., de Roos, A.: Synchronous and asynchronous updating in cellular automata. BioSystems 51, 123–143 (1999)

    CrossRef  Google Scholar 

  18. Wolfram, S.: Universality and complexity in cellular automata. Physica D 10, 1–35 (1984)

    CrossRef  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fatès, N. (2006). Directed Percolation Phenomena in Asynchronous Elementary Cellular Automata. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds) Cellular Automata. ACRI 2006. Lecture Notes in Computer Science, vol 4173. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11861201_77

Download citation

  • DOI: https://doi.org/10.1007/11861201_77

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40929-8

  • Online ISBN: 978-3-540-40932-8

  • eBook Packages: Computer ScienceComputer Science (R0)