Advertisement

Discrete Physics, Cellular Automata and Cryptography

  • Stephane Marconi
  • Bastien Chopard
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4173)

Abstract

This paper aims at showing that Physics is very close to the substitution-diffusion paradigm of symmetric ciphers. Based on this analogy, we present a new Cellular Automata algorithm, termed Crystal, implementing fast, parallel, scalable and secure encryption systems. Our approach provides a design principle to ensure an invertible dynamics for arbitrary neighborhood. Thus, several variants of our CA can be devised so as to offer customized encryption-decryption algorithms. Considering larger data blocks improve both security and speed (throughput larger than 10Gbps on dedicated hardware).

Keywords

Cellular Automaton Cellular Automaton Block Cipher Collision Operator Cellular Automaton Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cambridge University Press, Cambridge (1998)MATHCrossRefGoogle Scholar
  2. 2.
    Chopard, B., Marconi, S.: Discrete physics: a new way to look at cryptography. Technical report, University of Geneva (2005), http://arXiv.org/abs/nlin.CG/0504059
  3. 3.
    Durand-Lose, J.: Representing reversible cellular automata with reversible block cellular automata. In: Discrete Mathematics and Theoretical Computer Sciences Proceedings AA (DM-CCG), pp. 145–154 (2001)Google Scholar
  4. 4.
    Franti, E., Goschin, S., Dascalu, M., Catrina, N.: Criptocel: Design of cellular automata based cipher schemes. In: Communications, circuits and systems. ICCCAS, vol. 2, pp. 1103–1107. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  5. 5.
    Gutowitz, H.: Cryptography with dynamical systems. In: Goles, E., Boccara, N. (eds.) Cellular Automata and Cooperative phenomena, Kluwer Academic Publishers, Dordrecht (1993)Google Scholar
  6. 6.
    Pour la Science: dossier hors srie, editor. L’Art du Secret (2002)Google Scholar
  7. 7.
    Shannon, C.: Communication theory of secrecy systems. Bell Syst. Tech. Journal 28, 656–715 (1949)MATHMathSciNetGoogle Scholar
  8. 8.
    Toffoli, T., Margolus, N.: Cellular automota machines: a new environment for modelling. MIT Press, Cambridge (1987)Google Scholar
  9. 9.
    Wolfram, S.: Cryptography with cellular automata. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 429–432. Springer, Heidelberg (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Stephane Marconi
    • 1
  • Bastien Chopard
    • 1
  1. 1.Computer Science DepartmentUniversity of GenevaSwitzerland

Personalised recommendations