Optimal 6-State Algorithms for the Behavior of Several Moving Creatures

  • Mathias Halbach
  • Rolf Hoffmann
  • Lars Both
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4173)


The goal of our investigation is to find automatically the absolutely best rule for a moving creature in a cellular field. The task of the creature is to visit all empty cells with a minimum number of steps. We call this problem creature’s exploration problem. The behaviour was modelled using a variable state machine represented by a state table. Input to the state table is the current state and the neighbour’s state in front of the creature’s moving direction. The problem is that the search space for the possible rules grows exponentially with the number of states, inputs and outputs. We could solve the problem for six states, two inputs and two outputs with the aid of a parallel hardware platform (FPGA technology). The set of all possible n-state algorithms was first reduced by discarding equivalent, reducible and not strongly connected ones. The algorithms which showed a certain performance for five initial configurations during simulation were extracted by the hardware and send to the host PC. Additional tests for robustness and the behaviour of several creatures was carried out in software. One creature with the best algorithm can visit 99.92 % of the empty cells of 26 test configurations. Several creatures up to 16 can perform the task more efficiently for the tested initial configuration.


State Machine Cellular Automaton Good Algorithm State Table Empty Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mesot, B., Sanchez, E., Pena, C.A., Perez-Uribe, A.: SOS++: Finding Smart Behaviors Using Learning and Evolution. In: Standish, Abbass, Bedau (eds.) Artificial Life VIII, p. 264. MIT Press, Cambridge (2002)Google Scholar
  2. 2.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)MATHGoogle Scholar
  3. 3.
    Halbach, M., Heenes, W., Hoffmann, R., Tisje, J.: Optimizing the Behavior of a Moving Creature in Software and in Hardware. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 841–850. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Halbach, M., Hoffmann, R.: Optimal Behavior of a Moving Creature in the Cellular Automata Model. In: Malyshkin, V.E. (ed.) PaCT 2005. LNCS, vol. 3606, pp. 129–140. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Halbach, M., Heenes, W., Hoffmann, R.: Implementation of the Massively Parallel Model GCA. In: Parallel Computing in Electrical Engineering (PARELEC), Parallel System Architectures (2004)Google Scholar
  6. 6.
    Halbach, M., Hoffmann, R.: Implementing Cellular Automata in FPGA Logic. In: International Parallel & Distributed Processing Symposium (IPDPS), Workshop on Massively Parallel Processing (WMPP), IEEE Computer Society, Los Alamitos (2004)Google Scholar
  7. 7.
    Hochberger, C.: CDL – Eine Sprache für die Zellularverarbeitung auf verschiedenen Zielplattformen. PhD thesis, TU Darmstadt, Darmstädter Dissertation D17 (1998)Google Scholar
  8. 8.
    Hilbert, D.: Ueber die stetige Abbildung einer Linie auf ein Flachenstück. In: Mathematische Annalen, vol. 38, pp. 459–460. Springer, Heidelberg (1891)Google Scholar
  9. 9.
    Peano, G.: Sur une courbe, qui remplit une aire plane. In: Mathematische Annalen, vol. 36, pp. 157–160. Springer, Heidelberg (1890)Google Scholar
  10. 10.
    Halbach, M., Hoffmann, R.: Minimising the Hardware Resources for a Cellular Automaton with Moving Creatures. In: PARS Newsletter (2006)Google Scholar
  11. 11.
    Hoffmann, R., Ulmann, B., Völkmann, K.P., Waldschmidt, S.: A Stream Processor Architecture Based on the Configurable CEPRA-S. In: Grünbacher, H., Hartenstein, R.W. (eds.) FPL 2000. LNCS, vol. 1896, Springer, Heidelberg (2000)Google Scholar
  12. 12.
    Waldschmidt, S., Hochberger, C.: FPGA synthesis for cellular processing. In: IEEE/ACM International Workshop on Logic Synthesis, pp. 9–55–9–63 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mathias Halbach
    • 1
  • Rolf Hoffmann
    • 1
  • Lars Both
    • 1
  1. 1.FB Informatik, FG RechnerarchitekturTU DarmstadtDarmstadtGermany

Personalised recommendations