Advertisement

Stochastic Cellular-Automaton Model for Traffic Flow

  • Masahiro Kanai
  • Katsuhiro Nishinari
  • Tetsuji Tokihiro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4173)

Abstract

In recent studies on traffic flow, cellular automata (CA) have been efficiently applied for simulating the motion of vehicles. Since each vehicle has an exclusion volume and moves by itself not being ruled by the Newton’s laws of motion, CA is quite suitable for modelling traffic flow. In the present paper, we propose a stochastic CA model for traffic flow and show the availability of CA modelling for the complex phenomena that occur in real traffic flow.

Keywords

Cellular Automaton Traffic Flow Cellular Automaton Burger Equation Cellular Automaton Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Helbing, D.: Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 73, 1067–1141 (2001)CrossRefGoogle Scholar
  2. 2.
    Chowdhury, D., Santen, L., Schadschneider, A.: Statistical physics of vehicular traffic and some related systems. Phys. Rep. 329, 199–329 (2000)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Nagatani, T.: The physics of traffic jams. Rep. Prog. Phys. 65, 1331–1386 (2002)CrossRefGoogle Scholar
  4. 4.
    Matsukidaira, J., Nishinari, K.: Euler-Lagrange correspondence of cellular automata for traffic-flow models. Phys. Rev. Lett. 90, 088701-1–088701-4 (2003)Google Scholar
  5. 5.
    Tokihiro, T., Takahashi, D., Matsukidaira, J., Satsuma, J.: From Soliton Equations to Integrable Cellular Automata through a Limiting Procedure. Phys. Rev. Lett. 76, 3247–3250 (1996)CrossRefGoogle Scholar
  6. 6.
    Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E 51, 1035–1042 (1995)CrossRefGoogle Scholar
  7. 7.
    Bando, M., Hasebe, K., Nakanishi, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Phenomenological Study of Dynamical Model of Traffic Flow. J. Phys. I France 5, 1389–1399 (1995)Google Scholar
  8. 8.
    Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J. Phys. I France 2, 2221–2229 (1992)CrossRefGoogle Scholar
  9. 9.
    Nishinari, K., Fukui, M., Schadschneider, A.: A stochastic cellular automaton model for traffic flow with multiple metastable states. J. Phys. A 37, 3101–3110 (2004)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Takayasu, M., Takayasu, H.: 1/f noise in a traffic model. Fractals 1, 860–866 (1993)MATHCrossRefGoogle Scholar
  11. 11.
    Schadschneider, A., Schreckenberg, M.: Traffic flow models with ’slow-to-start’ rules. Ann. Physik 6, 541–551 (1997)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Nishinari, K.: A Lagrange representation of cellular automaton traffic-flow models. J. Phys. A 34, 10727–10736 (2001)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Newell, G.F.: Nonlinear effects in the dynamics of car flowing. Oper. Res. 9, 209–229 (1961)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kanai, M., Nishinari, K., Tokihiro, T.: Stochastic optimal velocity model and its long-lived metastability. Phys. Rev. E 72, 035102(R) (2005)Google Scholar
  15. 15.
    Kanai, M., Nishinari, K., Tokihiro, T.: Analytical study on the criticality of the stochastic optimal velocity model. Phys. Rev. E 39, 2921–2933 (2006)MATHMathSciNetGoogle Scholar
  16. 16.
    Sugiyama, Y., Yamada, H.: Simple and exactly solvable model for queue dynamics. Phys. Rev. E 55, 7749–7752 (1997)CrossRefGoogle Scholar
  17. 17.
    Nakanishi, K., Itoh, K., Igarashi, Y., Bando, M.: Solvable optimal velocity models and asymptotic trajectory. Phys. Rev. E 55, 6519–6532 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Masahiro Kanai
    • 1
  • Katsuhiro Nishinari
    • 2
  • Tetsuji Tokihiro
    • 1
  1. 1.Graduate School of Mathematical SciencesThe University of TokyoTokyoJapan
  2. 2.Department of Aeronautics and Astronautics, Faculty of EngineeringThe University of TokyoTokyoJapan

Personalised recommendations