Scale-Free Automata Networks Are Not Robust in a Collective Computational Task

  • Christian Darabos
  • Mario Giacobini
  • Marco Tomassini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4173)


We investigate the performances and collective task-solving capabilities of complex networks of automata using the density problem as a typical case. We show by computer simulations that evolved Watts–Strogatz small-world networks have superior performance with respect to scale-free graphs of the Albert–Barabási type. Besides, Watts–Strogatz networks are much more robust in the face of transient uniformly random perturbations. This result differs from information diffusion on scale-free networks, where random faults are highly tolerated.


Cellular Automaton Random Graph Small World Average Path Length Random Fault 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45, 167–256 (2003)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  3. 3.
    Garzon, M.: Models of Massive Parallelism: Analysis of Cellular Automata and Neural Networks. Springer, Berlin (1995)MATHGoogle Scholar
  4. 4.
    Kauffman, S.A.: The Origins of Order. Oxford University Press, New York (1993)Google Scholar
  5. 5.
    Watts, D.J.: Small worlds: The Dynamics of Networks between Order and Randomness. Princeton University Press, Princeton NJ (1999)Google Scholar
  6. 6.
    Serra, R., Villani, M.: Perturbing the regular topology of cellular automata: implications for the dynamics. In: Bandini, S., Chopard, B., Tomassini, M. (eds.) ACRI 2002. LNCS, vol. 2493, pp. 168–177. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Tomassini, M., Giacobini, M., Darabos, C.: Evolution of small-world networks of automata for computation. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 672–681. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Reviews of Modern Physics 74, 47–97 (2002)CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Land, M., Belew, R.K.: No perfect two-state cellular automata for density classification exists. Physical Review Letters 74(25), 5148–5150 (1995)CrossRefGoogle Scholar
  10. 10.
    Capcarrère, M.S., Sipper, M., Tomassini, M.: Two-state, r=1 cellular automaton that classifies density. Physical Review Letters 77(24), 4969–4971 (1996)CrossRefGoogle Scholar
  11. 11.
    Fukś, H.: Solution of the density classification problem with two cellular automata rules. Physical Review E 55(3), 2081–2084 (1997)CrossRefGoogle Scholar
  12. 12.
    Crutchfield, J.P., Mitchell, M., Das, R.: Evolutionary design of collective computation in cellular automata. In: Crutchfield, J.P., Schuster, P. (eds.) Evolutionary Dynamics: Exploring the Interplay of Selection, Accident, Neutrality, and Function, pp. 361–411. Oxford University Press, Oxford (2003)Google Scholar
  13. 13.
    Tomassini, M., Giacobini, M., Darabos, C.: Evolution and dynamics of small-world cellular automata. Complex Systems 15, 261–284 (2005)MATHMathSciNetGoogle Scholar
  14. 14.
    Sipper, M., Tomassini, M., Beuret, O.: Studying probabilistic faults in evolved non-uniform cellular automata. International Journal of Modern Physics C 7(6), 923–939 (1996)CrossRefGoogle Scholar
  15. 15.
    Albert, R., Jeong, H., Barabási, L.: Error and attack tolerance of complex networks. Nature 406, 378–382 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Christian Darabos
    • 1
  • Mario Giacobini
    • 1
  • Marco Tomassini
    • 1
  1. 1.Information Systems DepartmentUniversity of LausanneSwitzerland

Personalised recommendations