Advertisement

A Full Cellular Automaton to Simulate Predator-Prey Systems

  • Gianpiero Cattaneo
  • Alberto Dennunzio
  • Fabio Farina
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4173)

Abstract

A Cellular Automaton (CA) describing a predator–prey dynamics is proposed. This model is fully local, i.e., without any “spurious” Monte Carlo step during the movement phase. A particular attention has been addressed to the comparison of the obtained simulations with the discrete version of the Lotka–Volterra equations.

Keywords

Monte Carlo Cellular Automaton Physical Review Monte Carlo Step Prey Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antal, T., Droz, M.: Phase transitions and oscillations in a lattice prey-predator model. Physical Review E 63(11), 056119 (2001)CrossRefGoogle Scholar
  2. 2.
    Boccara, N., Roblin, O., Roger, M.: Automata network predator-prey model with pursuit and evasion. Physical Review E 50, 4531–4541 (1994)CrossRefGoogle Scholar
  3. 3.
    Chopard, B., Droz, M.: Cellular automata modelling of physical systems. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  4. 4.
    Droz, M., Pekalski, A.: Coexistence in a prey-predator system. Physical Review E 63(5), 051909 (2001)CrossRefGoogle Scholar
  5. 5.
    Hirsch, M.W., Smale, S.: Differential equations, dynamical systems, and linear algebra. Academic Press, NY (1974)MATHGoogle Scholar
  6. 6.
    Kovalik, M., Lipowski, A., Ferreira, A.L.: Oscillations and dynamics in a two-dimensional prey-predator system. Physical Review E 66(5), 066107 (2002)CrossRefGoogle Scholar
  7. 7.
    Lipowski, A.: Oscillatory behaviour in a lattice prey-predator system. Physical Review E 60, 5179–5184 (1999)CrossRefGoogle Scholar
  8. 8.
    Murray, J.D.: Mathematical biology. Springer, Berlin (1993)MATHCrossRefGoogle Scholar
  9. 9.
    Satulovsky, J.E., Tomè, T.: Stochastic lattice gas model for a predator-prey system. Physical Review E 49, 5073–5079 (1994)CrossRefGoogle Scholar
  10. 10.
    Szabò, G., Sznaider, G.A.: Phase transition and selection in a four-species cyclic predator-prey model. Physical Review E 69(5), 031911 (2004)CrossRefGoogle Scholar
  11. 11.
    Antal, T., Droz, M., Lipowski, A., Òdor, G.: Critical behaviour of a lattice prey-predator model. Physical Review E 64(6), 036118 (2001)CrossRefGoogle Scholar
  12. 12.
    Wolfram, S.: A new kind of science. Wolfram Media (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Gianpiero Cattaneo
    • 1
  • Alberto Dennunzio
    • 1
  • Fabio Farina
    • 1
  1. 1.Dipartimento di Informatica, Sistemistica e ComunicazioneUniversità degli Studi di Milano–BicoccaMilanoItaly

Personalised recommendations