Urban Sprawl: A Case Study for Project Gigalopolis Using SLEUTH Model

  • Matteo Caglioni
  • Mattia Pelizzoni
  • Giovanni A. Rabino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4173)


A brief approach through a CA-based model is perfect for modelling of different urban phenomena at different observation scales. SLEUTH model, situated in Project Gigalopolis, is a powerful tool for description of urban agglomeration and spatial dynamics. In this paper, new applications of this model, other methodological analyses, and sensitivity studies allow us to improve our comprehension of model parameters, taking advantage of this type of synthetic description of reality. Many deductions are possible thanks to the comparison of our studies with other precious databases, already existent, about results of this model.


Cellular Automaton Cellular Automaton Urban Growth Urban Sprawl Urban Dynamic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Couclelis, H.: From cellular automata to urban models: new principles for model development and implementation. Environment and Planning B 24(2), 165–174 (1997)CrossRefGoogle Scholar
  2. 2.
    Candau, J.T., Clarke, K.C., Rasmussen, S.: A coupled cellular automaton model for land use/land cover dynamics. In: 4th International Conference on Integrating GIS and Environmental Modeling (GIS/EM4), Alberta, Canada, vol. 94, pp. 1–13 (2000)Google Scholar
  3. 3.
    Clarke, K.C., Gaydos, L.: Loose-coupling a cellular automaton model and GIS: long-term urban growth prediction for San Francisco and Washington/Baltimore. International Journal of Geographical Information Science 12(7), 699–714 (1998)CrossRefGoogle Scholar
  4. 4.
    Dietzel, C., Clarke, K.C.: Replication of Spatial-temporal Land Use Patterns at Three Levels of Aggregation by an Urban Cellular Automata. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 523–532. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Candau, J.T.: Temporal Calibration Sensitivity of the Sleuth Urban Growth Model. University of California, Santa Barbara (2002)Google Scholar
  6. 6.
    Camagni, A.: Le ragioni della coesione territoriale: contenuti e possibili strategie di policy. Scienze Regionali (2), 97–111 (2004)Google Scholar
  7. 7.
    Wu, F.: Calibration of cellular automata parameters using tabu search: an application to urban spatial structure. In: 9th Computers in Urban Planning and Urban Management vol. 324, pp. 1–19 (2005)Google Scholar
  8. 8.
    Caglioni, M., Rabino, G.: Contribution to fractal analysis of the cities: a study of metropolitan area of Milan, vol. 260. Revue européenne de géographie, Cybergeo (2004), ISSN 1278-3366Google Scholar
  9. 9.
    Clarke, K.C.: Geocomputation’s future at the extremes: high performances computers and nanoclients. Parallel Computing 29, 1281–1295 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Matteo Caglioni
    • 1
  • Mattia Pelizzoni
    • 1
  • Giovanni A. Rabino
    • 1
  1. 1.DIAP,Department of Architecture and PlanningPolytechnic of MilanMilanItaly

Personalised recommendations