Interactive Terrain Simulation and Force Distribution Models in Sand Piles

  • Marta Pla-Castells
  • Ignacio García-Fernández
  • Rafael J. Martínez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4173)


This paper presents an application of Cellular Automata in the field of dry Granular Systems modelling. While the study of granular systems is not a recent field, no efficient models exist, from a computational point of view, in classical methodologies. Some previous works showed that the use of Cellular Automata is suitable for the development of models that can be used in real time applications. This paper extends the existing Cellular Automata models in order to make them interactive. A model for the reaction to external forces and a pressure distribution model are presented and analyzed, with numerical examples and simulations.


Cellular Automaton Cellular Automaton Vertical Force Granular System Cellular Automaton Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aradian, A., Raphael, E., de Gennes, P.G.: Surface flows of granular materials: a short introduction to some recent models. Comptes Rendus Physique 3, 187–196 (2002)CrossRefGoogle Scholar
  2. 2.
    Chen, C.C., den Nijs, M.: Directed avalanche processes with underlaying interface dynamics. Physical Review E 66 (2002)Google Scholar
  3. 3.
    Prado, C., Olami, Z.: Inertia and break of self-organized criticality in sandpile cellular-automata models. Phys. Rev. A 45, 6665–6669 (1992)CrossRefGoogle Scholar
  4. 4.
    Nerone, N., Gabbanelli, S.: Surface fluctuations and the inertia effect in sandpiles. Granular Matter 3, 117–120 (2001)CrossRefGoogle Scholar
  5. 5.
    Müller, M., Charypar, D., Gross, M.: Procedural modeling and animation: Particle-based fluid simulation for interactive applications. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 154–159 (2003)Google Scholar
  6. 6.
    Pla-Castells, M.: Nuevos modelos de sistemas granulares basados en autómatas celulares para simulación en tiempo real. MSc Thesis. Escuela Técnica Superior de Ingeniería, Universidad de Valencia (2003)Google Scholar
  7. 7.
    Pla-Castells, M., et al.: Approximation of Continuous Media Models for Granular Systems Using Cellular Automata. LNCS, pp. 230–237 (2004)Google Scholar
  8. 8.
    Bouchaud, J.P., Cates, M.E., Prakash, J.R., Edwards, S.F.: A Model for the Dynamics of Sandpile Surfaces. J. Phys. I France 4, 1383–1410 (1994)CrossRefGoogle Scholar
  9. 9.
    Hadeler, K.P., Kuttler, C.: Dynamical models for granular matter. Granular Matter 2, 9–18 (1999)CrossRefGoogle Scholar
  10. 10.
    Geng, J., Longhi, E., Behringer, R.P., Howell, D.W.: Memory in two-dimensional heap experiments. Physical Review E 64 (2001)Google Scholar
  11. 11.
    Liffman, K., Nguyen, M., Metcalfe, G., Cleary, P.: Forces in piles of granular material: an analytic and 3D DEM study. Granular matter 3, 165–176 (2001)CrossRefGoogle Scholar
  12. 12.
    Snoeijer, J.H., van Hecke, M., Somfai, E., van Saarloos, W.: Force and weight distributions in granular media: Effects of contact geometry. Physical Review E 67 (2003)Google Scholar
  13. 13.
    Snoeijer, J.H., van Hecke, M., Somfai, E., van Saarloos, W.: Packing geometry and statistics of force networks in granular media. Physical Review E 70 (2004)Google Scholar
  14. 14.
    Stewart, D.E.: Rigid-body dynamics with friction and impact. SIAM Review 42(1), 3–39 (2000)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    García-Fernández, I., Pla-Castells, M., Martínez, R.J.: New models for fast contact force computation. In: Industrial Simulation Conference, pp. 401–407 (2003)Google Scholar
  16. 16.
    Maciejewski, J., Jarzebowski, A.A.: Experimental analysis of soil deformation below a rolling rigid cylinder. Journal of Terramechanics 41, 223–241 (2004)CrossRefGoogle Scholar
  17. 17.
    Fukami, K., et al.: Mathematical models for soil displacement under a rigid wheel. Journal of Terramechanics 43, 287–301 (2006)CrossRefGoogle Scholar
  18. 18.
    Geng, J., et al.: Footprints in Sand: The Response of a Granular Material to Local Perturbations. Physical Review Letters 87 (2001)Google Scholar
  19. 19.
    Nouguier, C., Bohatier, C., Moreau, J.J., Radjai, F.: Force fluctuations in a pushed granular material. Granular matter 2, 171–178 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Marta Pla-Castells
    • 1
  • Ignacio García-Fernández
    • 2
  • Rafael J. Martínez
    • 2
  1. 1.Previfor Simulation S.L.AlavaSpain
  2. 2.LSyM. Instituto de Robótica.Universidad de ValenciaValenciaSpain

Personalised recommendations