A Bi-fluid Lattice Boltzmann Model for Water Flow in an Irrigation Channel

  • Olivier Marcou
  • Samira El Yacoubi
  • Bastien Chopard
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4173)


This paper is devoted to modelling of water flow dynamics in open-channels for the goal of controlling irrigation systems. We expose and validate a methodology based on Lattice Boltzmann models as an alternative to the commonly used Saint-Venant equations. We adapt a bi-fluid model to the case of a free surface water flow. A gravity force is applied to the heaviest fluid as to maintain it at the bottom. The considered boundary conditions take into account the control actions provided by the two underflow gates located at the left and right ends of the reach. Numerical results for density profiles are given to validate our approach.


Water Level Lattice Boltzmann Method Irrigation Canal Lattice Boltzmann Lattice Boltzmann Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bhatnager, P., Gross, E., Krook, M.: A model for collision process in gases. Phys. Rev. 94, 511, 1654Google Scholar
  2. 2.
    Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Ann. Rev. Fluid Mech. 30, 329–364 (1998); Chen, H., Chen, S., Matthaeus, W., Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method. Phys. Rev. A 45, R5339–R5342 (1992)Google Scholar
  3. 3.
    Chopard, B., Luthi, P., Masselot, A.: Cellular automata and lattice Boltzmann techniques: An approach to model and simulate complex systems. Advances in Complex Systems 5(2) (2002)Google Scholar
  4. 4.
    Chow, V.T.: Open-channels Hydrolics, International Students edn., p. 572. McGraw-Hill, New York (1954)Google Scholar
  5. 5.
    Colley, R.L., Moin, S.A.: Finite element solution of St Venant equation. Journal of hydraulical engineering. Division ASCE 102(NHY6), 759–775 (1976)Google Scholar
  6. 6.
    Cunge, J.A.: Simulation des écoulements non permanents dans les riviéres et canaux, Ecole Nationale Supérieure d’Hydraulique de Grenoble, p. 173 (1988)Google Scholar
  7. 7.
    Cunge, J.A., Holly, F.M., Verwey, A.: Practical aspects of computational river hydraulics, p. 420. Pitman Advanced Publishing Program (1980)Google Scholar
  8. 8.
    Graf, W.H.: Hydraulique fluviale, Collection traité de genie civil. Ecole polytechnique federale de Lausanne. Presses polytechniques et universitaire romandes (1993)Google Scholar
  9. 9.
    He, X., Zou, Q.: Analysis and boundary condition of the Lattice Boltzmann BGK Model with two velocities components, Los Alamos preprint, LA-UR-95-2293Google Scholar
  10. 10.
    He, X., Zou, Q.: On pressure and velocity flow boundary conditions for the lattice Boltzmann BGK model, Cellular Automata and Lattice Gases, abstract comp-gas/9508001 (1995),
  11. 11.
    Mahmood, M.A., Yevjevich, V.: Unsteady Flow in Open Channels, vol. 1 and 2. Water Ressources Publications, Fort Collins USAGoogle Scholar
  12. 12.
    Malaterre, P.-O., Baume, J.-P.: Modeling and regulation of irrigation canals: ongoing researchesGoogle Scholar
  13. 13.
    Malaterre, P.-O., Rogers, D., Schuurmans, J.: Classification of canal control algorithms. Journal of irrigation and drainage engeneering 98 I24(1), 3–10Google Scholar
  14. 14.
    Martys, N.S., Chen, H.: Simulation of multi-components fluids in complex three-dimensional geometries by the Lattice Boltzmann method. Phys. Review E 53(1) (1996)Google Scholar
  15. 15.
    Qian, Y., d’Humières, D., Lallemand, P.: Lattice BGK models for Navier-Stokes equations. Europhys. Lett. 17(6), 470–484 (1992) 94, 511, 1654CrossRefGoogle Scholar
  16. 16.
    Shan, X., Chen, H.: Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Review E 47(3) (1993)Google Scholar
  17. 17.
    Shan, X., Chen, H.: Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Phys. Review 49(4) (1994)Google Scholar
  18. 18.
    Shand, M.J.: Automatic downstreem control systems for irrigation canals, PhD, University of California, Berkley, p. 159 (1971)Google Scholar
  19. 19.
    Strelkoff, T.: Numerical solution of St Venant equation. Journal of hydraulical engineering. Division ASCE 96(HY1), 223–252 (1970)Google Scholar
  20. 20.
    Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford Science Publications, Oxford (2001)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Olivier Marcou
    • 1
    • 2
  • Samira El Yacoubi
    • 1
  • Bastien Chopard
    • 2
  1. 1.MEPS/ASDUniversity of PerpignanPerpignan, CedexFrance
  2. 2.Computer Science DepartmentUniversity of GenevaGeneva 4Switzerland

Personalised recommendations