Spreadable Probabilistic Cellular Automata Models: An Application in Epidemiology

  • Redouane Slimi
  • Samira El Yacoubi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4173)


Many important physical processes reveal spreadable phenomena which describe the expansion with time of a given spatial property. The general spreadability concept have been studied using models based on partial differential equations (PDE’s). These spreadable dynamics are generally non linear and then difficult to simulate particularly in 2 dimensions. A cellular automata approach have been used as an alternative modelling tool to model and simulate spreadable systems in the deterministic case.

We propose in this paper a probabilistic cellular automaton model that exhibits the growth with time of a spatial property. The obtained local dynamics are directly implemented and the numerical results are performed to illustrate spreadable phenomena. An example to epidemic propagation is given to illustrate the considered phenomena.


Cellular Automaton Cellular Automaton Distribute Parameter System Cellular Automaton Model Spreadable Phenomenon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    EL Jai, A., Kassara, K.: Spreadable distributed systems. Mathematical and Computer Modelling 20(1), 47–64 (1994)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    EL Jai, A., Kassara, K.: Spreadability of transport systems. International Journal of Systems Science 27(7), 681–688 (1996)MATHCrossRefGoogle Scholar
  3. 3.
    EL Jai, A., Kassara, K., Cabrera, O.: Spray Control. International Journal of Control 68, 709–730 (1997)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    El Yacoubi, S., El Jai, A., Karrakchou, J.: Spreadability and spray actuators. Journal of Applied Mathematics and Computer Science 8(2), 367–379 (1998)MATHGoogle Scholar
  5. 5.
    El Yacoubi, S., El Jai, A.: Cellular automata and spreadablility. Mathematical and Computer Modelling 36, 1059–1074 (2002)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    El Yacoubi, S., Slimi, R.: Spreadable cellular automata: Modelling and simulations. Int. Journal of Systems Analysis Modelling Simulation (to appear)Google Scholar
  7. 7.
    Gravner, J., Griffeath, D.: Thershold Growth Dynamics. Trans. Amer. Math. society, 837–870 (1993)Google Scholar
  8. 8.
    Jacewicz, P.: Modélisation Et Simulation Des Systèmes distribués Par Automates Cellulaires. Application En Ecologie. Thèse de doctorat, Université de Perpignan (2002)Google Scholar
  9. 9.
    Kassara, K.: Feedback spreading controls for semilinear parabolic systems. J. Comp. Appl. Math. 114, 41–54 (2000)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kassara, K.: Feedback spreading control laws for semilinear distributed parameter systems. Systems control lett. 40, 269–276 (2000)CrossRefMathSciNetGoogle Scholar
  11. 11.
    von Neumann, J.: Theory of Self-Reproducing Automata. Edited and completed by Arthur Burks, University of Illinois Press (1966)Google Scholar
  12. 12.
    Toffoli, T.: Cellular automata as an alternative to differential equation in modeling physics. Physica D 10, 117–127 (1984)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Redouane Slimi
    • 1
  • Samira El Yacoubi
    • 1
  1. 1.MEPS/ASDUniversity of PerpignanPerpignan, CedexFrance

Personalised recommendations