A Model Based on Cellular Automata to Simulate Epidemic Diseases

  • A. Martín del Rey
  • S. Hoya White
  • G. Rodríguez Sánchez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4173)


The main goal of this work is to introduce a mathematical model, based on two-dimensional cellular automata, to simulate epidemic diseases. Specifically, each cell stands for a square portion of the ground where the epidemic is spreading, and its state is given by the fractions of susceptible, infected and recovered individuals.


Cellular Automaton Infected Individual Epidemic Model Severe Acute Respiratory Syndrome Epidemic Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahmed, E., Agiza, H.N.: On modeling epidemics. Including latency, incubation and variable susceptibility, Physica A 253, 247–352 (1998)Google Scholar
  2. 2.
    Beauchemin, C., Samuel, J., Tuszynski, J.: A simple cellular automaton model for influenza A viral infections. J. Theor. Biol 232, 223–234 (2005)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Boccara, N., Cheong, K.: Critical behaviour of a probabilistic automata network SIS model for the spread of an infectious disease in a population of moving individuals. J. Phys A-Math. Gen. 26, 3707–3717 (1993)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Boccara, N., Cheong, K., Oram, M.: A probabilistic automata network epidemic model with births and deaths exhibiting cyclic behaviour. J. Phys A-Math. Gen. 27, 1585–1597 (1994)MATHCrossRefGoogle Scholar
  5. 5.
    Fuks, H., Lawniczak, A.T.: Individual-based lattice model for spatial spread of epidemics. Discrete Dyn. Nat. Soc. 6, 191–200 (2001)MATHCrossRefGoogle Scholar
  6. 6.
    Fuentes, M.A., Kuperman, M.N.: Cellular automata and epidemiological models with spatial dependence. Physica A 267, 471–486 (1999)CrossRefGoogle Scholar
  7. 7.
    Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics, part I. Proc. Roy. Soc. Edin. A 115, 700–721 (1927)CrossRefGoogle Scholar
  8. 8.
    Quan-Xing, L., Zhen, J.: Cellular automata modelling of SEIRS. Chinese Phys 14, 1370–1377 (2005)CrossRefGoogle Scholar
  9. 9.
    Ramani, A., Carstea, A.S., Willox, R., Grammaticos, G.: Oscillating epidemics: a discrete-time model. Physica A 333, 278–292 (2004)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Rousseau, G., Giorgini, G., Livi, R., Chaté, H.: Dynamical phases in a cellular automaton model for epidemic propagation. Physica D 103, 554–563 (1997)MATHCrossRefGoogle Scholar
  11. 11.
    Satsuma, J., Willox, R., Ramani, A., Grammaticos, B., Carstea, A.S.: Extending the SIR epidemic model. Physica A 336, 369–375 (2004)CrossRefGoogle Scholar
  12. 12.
    Sirakoulis, G.C., Karafyllidis, I., Thanailakis, A.: A cellular automaton model for the effects of population movement and vaccination on epidemic propagation. Ecol. Model. 133, 209–223 (2000)CrossRefGoogle Scholar
  13. 13.
    Willox, R., Grammaticos, B., Carstea, A.S., Ramani, A.: Epidemic dynamics: discrete-time and cellular automaton models. Physica A 328, 13–22 (2003)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • A. Martín del Rey
    • 1
  • S. Hoya White
    • 2
  • G. Rodríguez Sánchez
    • 3
  1. 1.Department of Applied MathematicsE.P.S. de Ávila, Universidad de SalamancaÁvilaEspaña
  2. 2.Department of Applied MathematicsUniversidad de Salamanca 
  3. 3.Department of Applied MathematicsE.P.S. de Zamora, Universidad de SalamancaZamoraEspaña

Personalised recommendations