A Cellular Automata Model for Adaptive Sympatric Speciation

  • Samira El Yacoubi
  • Sebastien Gourbière
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4173)


The emergence of new species is one of the trickiest issues of evolutionary biology. We propose a cellular automata model to investigate the possibility that speciation proceeds in sympatry, focusing on the importance of the structure of the landscape on the likelihood of speciation. The conditions for speciation are shown to be limited whatever the landscape being considered, although habitat structure best favours the emergence of new species.


Linkage Disequilibrium Cellular Automaton Reproductive Isolation Cellular Automaton Assortative Mating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bagnoli, F., Bezzi, M.: Speciation as Pattern Formation by Competition in a Smooth Fitness Landscape. Phys. Rev. Lett. 79, 3302–3305 (1997)CrossRefGoogle Scholar
  2. 2.
    Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cambridge University Press, Cambridge (1998)MATHCrossRefGoogle Scholar
  3. 3.
    Coyne, J.A., Orr, H.A.: Speciation. Sinauer Associates, Sunderland (2004)Google Scholar
  4. 4.
    Culik, K., Hurd, L.P., Yu, S.: Computation theoretic aspects of cellular automata. Physica D 45, 357–378 (1990)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Darwin, C.: On the Origin of Species by Means of Natural Selection, or The Preservation of Favoured Races in the Struggle for Life. John Murray, London (1859)Google Scholar
  6. 6.
    Dieckmann, U., Doebeli, M., Metz, J., Tautz, D. (eds.): Adaptive Speciation. Cambridge University Press, Cambridge (2004)MATHGoogle Scholar
  7. 7.
    Diehl, S.R., Bush, G.L.: The role of habitat preference in adaptation and speciation. In: Otte, D., Endler, J.A. (eds.) Speciation and its consequences, pp. 345–365. Sinauer Associates, Sunderland (1989)Google Scholar
  8. 8.
    El Yacoubi, S., El Jai, A.: Cellular automata and spreadability. Mathematical and Computational Modelling 36, 1059–1074 (2002)MATHCrossRefGoogle Scholar
  9. 9.
    Ermentrout, G.B., Edelstein-Keshet, L.: Cellular automata approaches to biological modeling. Journal of Theoretical Biology 160, 97–133 (1993)CrossRefGoogle Scholar
  10. 10.
    Fry, J.D.: Multilocus models of sympatric speciation: Bush versus Rice versus Felsenstein. Evolution 57, 1735–1746 (2003)Google Scholar
  11. 11.
    Gavrilets, S.: Fitness Landscapes and the Origin of Species. Monographs in Population Biology, vol. 41. Princeton Uiversity Press, Princeton (2004)Google Scholar
  12. 12.
    Green, D.G.: Simulated effects of fire, dispersal and spatial pattern on competition within forest mosaics. Vegetation 82, 139–153 (1989)CrossRefGoogle Scholar
  13. 13.
    Kawecki, T.J.: Sympatric Speciation Driven by Beneficial Mutations. Proceedings Royal Society of London 265, 1515–1520 (1996)CrossRefGoogle Scholar
  14. 14.
    Kawecki, T.J.: Sympatric Speciation via Habitat Specialization Driven by Deleterious Mutations. Evolution 51, 1751–1763 (1997)CrossRefGoogle Scholar
  15. 15.
    Mange, D., Tomassini, M. (eds.): Bio-Inspired Computing Machines, Presses Polytechniques et Universitaires Romandes (1998)Google Scholar
  16. 16.
    Margolus, N.: Physics-like models of computation. Physica D 10, 81–95 (1984)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Maynard Smith, J.: Sympatric speciation. Am. Nat. 100, 637–650 (1966)CrossRefGoogle Scholar
  18. 18.
    Mayr, E.: Systems of ordering data. Biol. Phil. 10, 419–434 (1995)CrossRefGoogle Scholar
  19. 19.
    Murray, J.D.: Mathematical Biology, Biomathematics Texts. Springer, Heidelberg (1993)Google Scholar
  20. 20.
    Perrier, J.Y., Sipper, M., Zahnd, J.: Toward a viable, self-reproducing universal computer. Physica D 97, 335–352 (1996)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Savolainen, V., Anstett, M.C., Lexer, C., Hutton, I., Clarkson, J.J., Norup, M.V., Powell, M.P., Springate, D., Salamin, N., Baker, W.J.: Sympatric speciation in palms on an oceanic island. Nature 441, 210–213 (2006)CrossRefGoogle Scholar
  22. 22.
    Sipper, M.: Non-Uniform Cellular Automata: Evolution in Rule Space and Formation of Complex Structures. In: Brooks, R.A., Maes, P. (eds.) Artificial Life IV, pp. 394–399. MIT Press, Cambridge (1994)Google Scholar
  23. 23.
    Toffoli, T.: Cellular automata as an alternative to (rather than an approximation of) differential equations in modeling physics. Physica D 10, 117–127 (1984)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Vichniac, G.: Simulating physics with cellular automata. Physica D 10, 96–115 (1984)CrossRefMathSciNetGoogle Scholar
  25. 25.
    von Neumann, J.: Theory of Self-Reproducing Automata. University of Illinois Press, Illinois Edited and completed by A.W. Burks (1966)Google Scholar
  26. 26.
    Wolfram, S.: Cellular automata and complexity: collected papers. Addison-Wesley, Reading (1994)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Samira El Yacoubi
    • 1
  • Sebastien Gourbière
    • 1
  1. 1.MEPS/ASDUniversity of PerpignanPerpignan, CedexFrance

Personalised recommendations