Advertisement

CA Simulation of Biological Evolution in Genetic Hyperspace

  • Michael A. Saum
  • Sergey Gavrilets
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4173)

Abstract

Realistic simulation of biological evolution by necessity requires simplification and reduction in the dimensionality of the corresponding dynamic system. Even when this is done, the dynamics remain complex. We utilize a Stochastic Cellular Automata model to gain a better understanding of the evolutionary dynamics involved in the origin of new species, specifically focusing on rapid speciation in an island metapopulation environment. The effects of reproductive isolation, mutation, migration, spatial structure, and extinction on the emergence of new species are all studied numerically within this context.

Keywords

Cellular Automaton Biological Evolution Speciation Process Metapopulation Model Cambrian Explosion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Futuyma, D.J.: Evolutionary biology. Sinauer, Sunderlands (1998)Google Scholar
  2. 2.
    Coyne, J.A., Orr, H.A.: Speciation. Sinauer Associates, Sunderland (2004)Google Scholar
  3. 3.
    Gavrilets, S.: Fitness landscapes and the origin of species. Princeton University Press, Princeton (2004)Google Scholar
  4. 4.
    Wolfram, S.: Statistical mechanics of cellular automata. Reviews of Modern Physics 55, 601–644 (1983)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Huberman, B.A., Glance, N.S.: Evolutionary games and computer simulations. Proceedings of the National Acedemy of Sciences USA 90, 7716–7718 (1993)MATHCrossRefGoogle Scholar
  6. 6.
    Keymer, J.E., Marquet, P.A., Johnson, A.R.: Pattern formation in a patch occupancy metapopulation model: A cellular automata approach. Journal of Theoretical Biology 194, 79–90 (1998)CrossRefGoogle Scholar
  7. 7.
    Keymer, J.E., Marquet, P.A., Velasco-Hernández, J.X., Levin, S.A.: Extinction thresholds and metapopulation persistence in dynamic landscapes. American Naturalist 156, 478–494 (2000)CrossRefGoogle Scholar
  8. 8.
    Molofsky, J., Durrett, R., Dushoff, J., Griffeath, D., Levin, S.: Local frequency dependence and global coexistence. Theoretical Population Biology 55, 270–282 (1999)MATHCrossRefGoogle Scholar
  9. 9.
    Molofsky, J., Bever, J.D., Antonovics, J.: Coexistence under positive frequency dependence. Proceedings of the Royal Society London Series B 268, 273–277 (2001)CrossRefGoogle Scholar
  10. 10.
    Durrett, R., Buttel, L., Harrison, R.: Spatial models for hybrid zones. Heredity 84, 9–19 (2000)CrossRefGoogle Scholar
  11. 11.
    Carrillo, C., Britton, N.F., Mogie, M.: Coexistence of sexual and asexual conspecifics: a cellular automaton model. Journal of Theoretical Biology 275-285, 217 (2002)MathSciNetGoogle Scholar
  12. 12.
    Ganguly, N., Sikdar, B.K., Deutsch, A., Canright, G., Chaudhuri, P.P.: A survey on cellular automata. Technical Report Centre for High Performance Computing, Dresden University of Technology (December 2003)Google Scholar
  13. 13.
    Gavrilets, S., Acton, R., Gravner, J.: Dynamics of speciation and diversification in a metapopulation. Evolution 54, 1493–1501 (2000)Google Scholar
  14. 14.
    Gavrilets, S.: Speciation in metapopulations. In: Hanski, I., Gaggiotti, O. (eds.) Ecology, genetics and evolution of metapopulations, pp. 275–303. Elsevier, Amsterdam (2004)CrossRefGoogle Scholar
  15. 15.
    Hubbell, S.P.: The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton (2001)Google Scholar
  16. 16.
    Kimura, M.: The neutral theory of molecular evolution. Cambridge University Press, New York (1983)CrossRefGoogle Scholar
  17. 17.
    Everitt, B.S.: Cluster analysis. Arnold, London (1993)Google Scholar
  18. 18.
    Gavrilets, S.: Dynamics of clade diversification on the morphological hypercube. Proc. R. Soc. Lond. B 266, 817–824 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Michael A. Saum
    • 1
  • Sergey Gavrilets
    • 1
    • 2
  1. 1.Department of MathematicsUniversity of TennesseeKnoxville
  2. 2.Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxville

Personalised recommendations