Introducing Reversibility in a High Level JJL Qubit Model According to CAN2 Paradigm

  • C. R. Calidonna
  • A. Naddeo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4173)


Reversibility is a concept widely studied in physics as well as in computer science. Reversible computation is characterized by means of invertible properties [1]. Quantum systems evolution is described by the time evolution operator U, which is unitary and invertible; therefore such systems can implement reversibility. Reversible/invertible Cellular Automata (CA) [1] are one of the most relevant reversible computational models. Here we introduce a model for a Josephson junction ladder (JJL) device addressing reversibility: it is based on a hybrid Cellular Automata Network (CAN), the CAN2 one[2][3][4].


Cellular Automaton Cellular Automaton Global Operator Reversible Logic Magnetic Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Toffoli, T., et al.: Invertible cellular automata. Physica D 45, 229–253 (1990)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Calidonna, C.R., Naddeo, A.: Using a hybrid CA based model for a flexible qualitative qubit simulation: fully frustrated JJL application. In: Computing Frontiers 2005, pp. 145–151. ACM Press, New York (2005)Google Scholar
  3. 3.
    Calidonna, C.R., Naddeo, A.: Towards a CA model for quantum computation with fully frustrated Josephson junction arrays. Phys. Lett. A 327, 409–415 (2004)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Calidonna, C.R., Naddeo, A.: A basic qualitative CA based model of a frustrated linear Josephson junction array. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 248–257. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Leff, H.S., Rex, A.F.: Maxwell’s Demon: Entropy. Princeton University Press, Princeton (1990)CrossRefGoogle Scholar
  6. 6.
    Toffoli, T.: Cellular Automata Mechanics, Ph.D. Thesis, Univ. of Michigan (1977)Google Scholar
  7. 7.
    Alonso-Sanz, R., Martin, M.: Three-state one-dimensional cellular automata with memory. Chaos Sol. Frac. 21, 809–834 (2004)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Granato, E.: Phase transitions in Josephson junction ladders in a magnetic field. Phys. Rev. B 42, 4797–4799 (1990)CrossRefGoogle Scholar
  9. 9.
    Fulde, P., Ferrel, R.A.: Superconductivity in a strong spin–exchange field. Phys. Rev. 135, A550–A563 (1964)CrossRefGoogle Scholar
  10. 10.
    Blanter, Y.: Duality in Josephson junction arrays. Nucl. Phys. B S58, 79–90 (1997)MathSciNetGoogle Scholar
  11. 11.
    Naddeo, A., et al.: A conformal field theory description of magnetic flux fractionalization in Josephson junction ladders. Eur. Phys. J. B49, 83–91 (2006)Google Scholar
  12. 12.
    Galindo, A., Martin-Delgado, M.A.: Information and computation: classical and quantum aspects. Rev. Mod. Phys. 74, 347–423 (2002)CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Goldobin, E., et al.: Ground states in 0 − π long Josephson junctions. Phys. Rev. B 67, 224515/1-9 (2003)Google Scholar
  14. 14.
    Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21, 219–253 (1982)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Deutsch, D.: Quantum computational networks. Proc. R. Soc. London A 425, 73–90 (1989)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • C. R. Calidonna
    • 1
  • A. Naddeo
    • 2
  1. 1.CESIC – NEC ItaliaRende (CS)Italy
  2. 2.Dipartimento di Fisica “E. R. Caianiello”Universitá degli Studi di Salerno and CNISMBaronissi (SA)Italy

Personalised recommendations