We use finite interpretations to guide searches in first-order and equational theorem provers. The interpretations are carefully chosen and based on expert knowledge of the problem area of the conjecture. The method has been implemented in the Prover9 system, and equational examples are given the areas of lattice theory, Boolean algebras, and modular ortholattices.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hillenbrand, T., Buch, A., Vogt, R., Löchner, B.: Waldmeister. J. Automated Reasoning 18(2), 265–270 (1997)CrossRefGoogle Scholar
  2. 2.
    Hodgson, K., Slaney, J.: TPTP, CASC and the development of a semantically guided theorem prover. AI Communications 15, 135–146 (2002)zbMATHGoogle Scholar
  3. 3.
    McCune, W.: Mace4 Reference Manual and Guide. Tech. Memo ANL/MCS-TM-264, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL (August 2003)Google Scholar
  4. 4.
    McCune, W.: Otter 3.3 Reference Manual. Tech. Memo ANL/MCS-TM-263, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL (August 2003)Google Scholar
  5. 5.
    McCune, W.: Prover9 (2005),
  6. 6.
    McCune, W., Henschen, L.: Experiments with semantic paramodulation. J. Automated Reasoning 1(3), 231–261 (1984)MathSciNetGoogle Scholar
  7. 7.
    McCune, W., Padmanabhan, R., Rose, M.A., Veroff, R.: Automated discovery of single axioms for ortholattices. Algebra Universalis 52, 541–549 (2005)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Padmanabhan, R., McCune, W., Veroff, R.: Lattice laws forcing distributivity under unique complementation. Houston J. Math. (to appear)Google Scholar
  9. 9.
    Slagle, J.R.: Automatic theorem proving with renamable and semantic resolution. J. ACM 14(4), 687–697 (1967)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Slaney, J., Binas, A., Price, D.: Guiding a theorem prover with soft constraints. In: Proceedings of the 16th European Conference on Artificial Intelligence, pp. 221–225 (2004)Google Scholar
  11. 11.
    Slaney, J., Lusk, E., McCune, W.: SCOTT: Semantically constrained Otter. In: Bundy, A. (ed.) CADE 1994. LNCS, vol. 814, pp. 764–768. Springer, Heidelberg (1994)Google Scholar
  12. 12.
    Veroff, R.: Solving open questions and other challenge problems using proof sketches. J. Automated Reasoning 27(2), 157–174 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Veroff, R.: A shortest 2-basis for Boolean algebra in terms of the Sheffer stroke. J. Automated Reasoning 31(1), 1–9 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Wos, L., Robinson, G., Carson, D.: Efficiency and completeness of the set of support strategy in theorem proving. J. ACM 12(4), 536–541 (1965)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • William McCune
    • 1
  1. 1.Argonne National LaboratoryUSA

Personalised recommendations