Hierarchical Representations with Signatures for Large Expression Management

  • Wenqin Zhou
  • J. Carette
  • D. J. Jeffrey
  • M. B. Monagan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4120)


We describe a method for managing large expressions in symbolic computations which combines a hierarchical representation with signature calculations. As a case study, the problem of factoring matrices with non-polynomial entries is studied. Gaussian Elimination is used. Results on the complexity of the approach together with benchmark calculations are given.


Hierarchical Representation Veiling Strategy Signature Zero Test Large Expression Management Symbolic LU Decomposition Time Complexity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schwartz, J.T.: Fast Probabilistic Algorithms for Verification of Polynomial Identities. J. ACM 27(4), 701–717 (1980)CrossRefzbMATHGoogle Scholar
  2. 2.
    Zippel, R.: Probabilistic Algorithms for Sparse Polynomials. In: Ng, K.W. (ed.) EUROSAM 1979 and ISSAC 1979. LNCS, vol. 72, pp. 216–226. Springer, Heidelberg (1979)Google Scholar
  3. 3.
    Gonnet, G.H.: Determining Equivalence of Expressions in Random Polynomial Time. In: Proc. of ACM on Theory of computing, pp. 334–341 (1984) (extended abstract)Google Scholar
  4. 4.
    Gonnet, G.H.: New results for random determination of equivalence of expressions. In: Proc. of ACM on Symbolic and algebraic comp., pp. 127–131 (1986)Google Scholar
  5. 5.
    Monagan, M.B.: Signatures + Abstract Types = Computer Algebra − Intermediate Expression Swell. PhD Thesis, University of Waterloo (1990)Google Scholar
  6. 6.
    Monagan, M.B.: Gauss: a Parameterized Domain of Computation System with Support for Signature Functions. In: Miola, A. (ed.) DISCO 1993. LNCS, vol. 722, pp. 81–94. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  7. 7.
  8. 8.
  9. 9.
    Freeman, T.S., Imirzian, G., Kaltofen, E., Yagati, L.: DAGWOOD: A system for manipulating polynomials given by straight-line programs. ACM Trans. Math. Software 14(3), 218–240 (1988)CrossRefzbMATHGoogle Scholar
  10. 10.
    Corless, R.M., Jeffrey, D.J., Monagan, M.B., Pratibha: Two Perturbation Calculation in Fluid Mechanics Using Large-Expression Management. J. Symbolic Computation 11, 1–17 (1996)Google Scholar
  11. 11.
    Zippel, R.: Effective Polynomial computation. Kluwer, Dordrecht (1993)zbMATHGoogle Scholar
  12. 12.
    Kaltofen, E.: Greatest Common Divisors of Polynomials Given by Straight-Line Programs. J. of the Association for Computing Machinery 35(1), 231–264 (1988)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Giusti, M., Hägele, K., Lecerf, G., Marchand, J., Salvy, B.: The projective Noether Maple package: computing the dimension of a projective variety. J. Symbolic Computation 30(3), 291–307 (2000)CrossRefzbMATHGoogle Scholar
  14. 14.
    Kaltofen, E.: Computing with polynomials given by straight-line programs I: greatest common divisors. In: Proceedings of ACM on Theory of computing, pp. 131–142 (1985)Google Scholar
  15. 15.
    Monagan, M.B., Gonnet, G.H.: Signature Functions for Algebraic Numbers. In: ISSAC, pp. 291–296 (1994)Google Scholar
  16. 16.
    Monagan, M.B., Monagan, G.: A toolbox for program manipulation and efficient code generation with an application to a problem in computer vision. In: ISSAC, pp. 257–264 (1997)Google Scholar
  17. 17.
    Sasaki, T., Murao, H.: Efficient Gaussian elimination method for symbolic determinants and linear systems (Extended Abstract). In: ISSAC, pp. 155–159 (1981)Google Scholar
  18. 18.
    Nicholson, W.K.: Linear Algebra with Applications, 4th edn. McGraw-Hill Ryerson, New York (2003)Google Scholar
  19. 19.
    Bareiss, E.H.: Sylvester’s Identity and Multistep Integer-Preserving Gaussian Elimination. Mathematics of Computation 22(103), 565–578 (1968)CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    Bareiss, E.H.: Computational Solutions of Matrix Problems Over an Integral Domain. J. Inst. Maths Applics. 10, 68–104 (1972)CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Heintz, J., Schnorr, C.P.: Testing polynomials which are easy to compute (Extended Abstract). In: Proceedings of ACM on Theory of computing, pp. 262–272 (1980)Google Scholar
  22. 22.
    Martin, W.A.: Determining the equivalence of algebraic expressions by hash coding. In: Proceedings of ACM on symbolic and algebraic manipulation, pp. 305–310 (1971)Google Scholar
  23. 23.
    Ibarra, O.H., Leininger, B.S.: On the Simplification and Equivalence Problems for Straight-Line Programs. J. ACM 30(3), 641–656 (1983)CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    Ibarra, O.H., Moran, S.: Probabilistic Algorithms for Deciding Equivalence of Straight-Line Programs. J. ACM 30(1), 217–228 (1983)CrossRefMathSciNetzbMATHGoogle Scholar
  25. 25.
    Ibarra, O.H., Moran, S., Rosier, L.E.: Probabilistic Algorithms and Straight-Line Programs for Some Rank Decision Problems. Infor. Proc. Lett. 12(5), 227–232 (1981)CrossRefMathSciNetzbMATHGoogle Scholar
  26. 26.
    Shoup, V.: A Computational Introduction to Number Theory and Algebra. Cambridge University Press, Cambridge (2005)zbMATHGoogle Scholar
  27. 27.
    Kaltofen, E.: On computing determinants of matrices without divisions. In: ISSAC, pp. 342–349 (1992)Google Scholar
  28. 28.
    von zur, G.J., Gerhard, J.: Modern computer algebra. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  29. 29.
    Carette, J.: Understanding Expression Simplification. In: ISSAC, pp. 72–79 (2004)Google Scholar
  30. 30.
    Carette, J., Kiselyov, O.: Multi-stage Programming with Functors and Monads: Eliminating Abstraction Overhead from Generic Code. In: Glück, R., Lowry, M. (eds.) GPCE 2005. LNCS, vol. 3676, pp. 256–274. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  31. 31.
    Steinberg, S., Roach, P.: Symbolic manipulation and computational fluid dynamics. Journal of Computational Physics 57, 251–284 (1985)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Wenqin Zhou
    • 1
  • J. Carette
    • 2
  • D. J. Jeffrey
    • 1
  • M. B. Monagan
    • 3
  1. 1.University of Western OntarioLondonCanada
  2. 2.McMaster UniversityHamiltonCanada
  3. 3.Simon Fraser UniversityBurnabyCanada

Personalised recommendations