Skip to main content

A Search Engine for Mathematical Formulae

  • Conference paper
Artificial Intelligence and Symbolic Computation (AISC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4120))

Abstract

We present a search engine for mathematical formulae. The MathWebSearch system harvests the web for content representations (currently MathML and OpenMath) of formulae and indexes them with substitution tree indexing, a technique originally developed for accessing intermediate results in automated theorem provers. For querying, we present a generic language extension approach that allows constructing queries by minimally annotating existing representations. First experiments show that this architecture results in a scalable application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ausbrooks, R., Buswell, S., Carlisle, D., et al.: Mathematical Markup Language (MathML) version 2.0 (second edition). In: W3C recommendation, World Wide Web Consortium (2003), Available at: http://www.w3.org/TR/MathML2

  2. Asperti, A., Selmi, M.: Efficient retrieval of mathematical statements. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS, vol. 3119, pp. 1–4. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Buswell, S., Caprotti, O., Carlisle, D.P., Dewar, M.C., Gaetano, M., Kohlhase, M.: The Open Math standard, version 2.0. Technical report, The Open Math Society (2004), http://www.openmath.org/standard/om20

  4. Creative Commons. Web page at: http://creativecommons.org

  5. Free Software Foundation FSF. Gnu general public license (1991), Software License available at: http://www.gnu.org/copyleft/gpl.html

  6. Grosso, P., Maler, E., Marsh, J., Walsh, N.: Xpointer framework. In: W3c recommendation, World Wide Web Constortium W3C, March 25 (2003)

    Google Scholar 

  7. Graf, P.: Term Indexing. LNCS, vol. 1053. Springer, Heidelberg (1996)

    Google Scholar 

  8. Huerter, S., Rodionov, I., Watt, S.: Content-faithful transformations for mathml. In: Second International Conference on MathML and Technologies for Math on the Web, Chicago, USA (2002), http://www.mathmlconference.org/2002/presentations/huerter/

  9. Ida, T., Calmet, J., Wang, D.: AISC 2006. LNCS (LNAI), vol. 4120. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  10. Kohlhase, M., Franke, A.: MBase: Representing knowledge and context for the integration of mathematical software systems. Journal of Symbolic Computation; Special Issue on the Integration of Computer algebra and Deduction Systems 32(4), 365–402 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Kohlhase, A., Kohlhase, M.: Communities of practice in MKM: An extensional model. In: Borwein, J.M., Farmer, W.M. (eds.) MKM 2006. LNCS (LNAI), vol. 4108, pp. 179–193. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Kohlhase, M.: OMDoc – An Open Markup Format for Mathematical Documents [version 1.2]. LNCS (LNAI), vol. 4180. Springer, Heidelberg (in press, 2006), http://www.mathweb.org/omdoc/pubs/omdoc1.2.pdf

    Book  Google Scholar 

  13. Libbrecht, P., Melis, E.: Methods to access and retrieve mathematical content in activeMath. In: Iglesias, A., Takayama, N. (eds.) ICMS 2006. LNCS, vol. 4151, pp. 331–342. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Math web search (July 2006), Web page at: http://kwarc.eecs.iu-bremen.de/projects/mws/

  15. Melis, E., Büdenbender, J., Goguadze, G., Libbrecht, P., Ullrich, C.: Knowledge representation and management in ActiveMath. Annals of Mathematics and Artificial Intelligence 38, 47–64 (2003), http://www.activemath.org

    Article  MATH  Google Scholar 

  16. Miller, B., Youssef, A.: Technical aspects of the digital library of mathematical functions. Annals of Mathematics and Artificial Intelligence 38(1-3), 121–136 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Normann, I.: Enhanced theorem reuse by partial theory inclusionss. In: Ida, et al. [ICW06]

    Google Scholar 

  18. Normann, I.: Extended normalization for e-retrieval of formulae. In: Proceedings of Communicating Mathematics in the Digital Era (to appear, 2006)

    Google Scholar 

  19. The open archives initiative protocol for metadata harvesting (June 2002), Available at: http://www.openarchives.org/OAI/openarchivesprotocol.html

  20. Theiß, F., Sorge, V., Pollet, M.: Interfacing to computer algebra via term indexing. In: Ranise, S., Sebastiani, R. (eds.) Calculemus 2006 (2006)

    Google Scholar 

  21. Wolfram, S.: The Mathematica Book. Cambridge University Press, Cambridge (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kohlhase, M., Sucan, I. (2006). A Search Engine for Mathematical Formulae. In: Calmet, J., Ida, T., Wang, D. (eds) Artificial Intelligence and Symbolic Computation. AISC 2006. Lecture Notes in Computer Science(), vol 4120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11856290_21

Download citation

  • DOI: https://doi.org/10.1007/11856290_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-39728-1

  • Online ISBN: 978-3-540-39730-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics