Advertisement

Using Hajós’ Construction to Generate Hard Graph 3-Colorability Instances

  • Sheng Liu
  • Jian Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4120)

Abstract

In this paper we propose a constructive algorithm using constraint propagation to generate 4-critical graph units (4-CGUs) which have only one triangle as subgraph. Based on these units we construct 4-critical graphs using Hajós’ join construction. By choosing Grotztsch graph as the initial graph and carefully selecting the edge to be joined, we make sure that the generated graphs are 4-critical and triangle-free. Experiments show that these graphs are exceptionally hard for backtracking algorithms adopting Brélaz’s heuristics. We also give some preliminary analysis on the source of hardness.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Garey, M.R., Johnson, D.S.: Computers and Intractability - A Guide to the Theory of NP-Completeness. W. H. Freeman, San Francisco (1979)zbMATHGoogle Scholar
  2. 2.
    Kubale, M., Jackowski, B.: A generalized implicit enumeration algorithm for graph coloring. Commun. ACM 28(4), 412–418 (1985)CrossRefGoogle Scholar
  3. 3.
    Mehrotra, A., Trick, M.A.: A column generation approach for graph coloring. INFORMS Journal on Computing 8, 344–354 (1996)CrossRefzbMATHGoogle Scholar
  4. 4.
    Johnson, D.S., Trick, M.A. (eds.): Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, Workshop, October 11-13, 1993. American Mathematical Society, Boston (1996)Google Scholar
  5. 5.
    Brélaz, D.: New methods to color the vertices of a graph. Commun. ACM 22(4), 251–256 (1979)CrossRefzbMATHGoogle Scholar
  6. 6.
    Peemöller, J.: A correction to Brélaz’s modification of Brown’s coloring algorithm. Commun. ACM 26(8), 595–597 (1983)CrossRefGoogle Scholar
  7. 7.
    Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring. Computing 39(4), 345–351 (1987)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Galinier, P., Hao, J.K.: Hybrid evolutionary algorithms for graph coloring. J. Comb. Optim. 3(4), 379–397 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Vlasie, R.D.: Systematic generation of very hard cases for graph 3-colorability. In: Proceedings of 7th IEEE ICTAI (1995)Google Scholar
  10. 10.
    Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the really hard problems are. In: Proceedings of the 12th IJCAI, pp. 331–337 (1991)Google Scholar
  11. 11.
    Hogg, T., Williams, C.P.: The hardest constraint problems: A double phase transition. Artificial Intelligence 69, 359–377 (1994)CrossRefzbMATHGoogle Scholar
  12. 12.
    Mammen, D.L., Hogg, T.: A new look at the easy-hard-easy pattern of combinatorial search difficulty. Journal of Artificial Intelligence Research 7, 47–66 (1997)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Culberson, J., Gent, I.: Frozen development in graph coloring. Theoretical Computer Science 265(1–2), 227–264 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Nishihara, S., Mizuno, K., Nishihara, K.: A composition algorithm for very hard graph 3-colorability instances. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 914–919. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)Google Scholar
  16. 16.
    Jensen, T.R., Toft, B.: Graph Coloring Problems. Wiley, New York (1995)zbMATHGoogle Scholar
  17. 17.
    Caramia, M., Dell’Olmo, P.: Constraint propagation in graph coloring. Journal of Heuristics 8(1), 83–107 (2002)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sheng Liu
    • 1
    • 2
  • Jian Zhang
    • 1
  1. 1.Laboratory of Computer Science, Institute of SoftwareChinese Academy of SciencesBeijingChina
  2. 2.Graduate UniversityChinese Academy of SciencesBeijingChina

Personalised recommendations