Solving Dynamic Geometric Constraints Involving Inequalities

  • Hoon Hong
  • Liyun Li
  • Tielin Liang
  • Dongming Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4120)


This paper presents a specialized method for solving dynamic geometric constraints involving equalities and inequalities. The method works by decomposing the system of constraints into finitely many explicit solution representations in terms of parameters with radicals using triangular decomposition and real quantifier elimination. For any given values of the parameters, if they verify some set of computed relations, the values of the dependent variables may be easily computed by direct evaluation of the corresponding explicit expressions. The effectiveness of our method and its experimental implementation is illustrated by some examples of diagram generation.


Inequality Constraint Real Solution Geometric Constraint Geometric Object Radical Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brown, C.W., Hong, H.: QEPCAD — Quantifier elimination by partial cylindrical algebraic decomposition (2004),
  2. 2.
    Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. J. Symb. Comput. 12, 299–328 (1991)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Dolzmann, A., Sturm, T., Weispfenning, V.: A new approach for automatic theorem proving in real geometry. J. Automat. Reason. 21(3), 357–380 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    González-Vega, L.: A combinatorial algorithm solving some quantifier elimination problems. In: Caviness, B., Johnson, J. (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition, pp. 300–316. Springer, Wien (1996)Google Scholar
  5. 5.
    Hong, H.: Quantifier elimination for formulas constrained by quadratic equations via slope resultants. The Computer J. 36(5), 440–449 (1993)Google Scholar
  6. 6.
    Joan-Arinyo, R., Hoffmann, C.M.: A brief on constraint solving (2005),
  7. 7.
    Kim, D., Kim, D.-S., Sugihara, K.: Apollonius tenth problem via radius adjustment and Möbius transformations. Computer-Aided Design 38(1), 14–21 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Lewis, R.H., Bridgett, S.: Conic tangency equations and Apollonius problems in biochemistry and pharmacology. Math. Comput. Simul. 61(2), 101–114 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Wang, D.: Elimination Methods. Springer, Wien (2001)zbMATHGoogle Scholar
  10. 10.
    Wang, D.: Automated generation of diagrams with Maple and Java. In: Joswig, M., Takayama, N. (eds.) Algebra, Geometry, and Software Systems, pp. 277–287. Springer, Heidelberg (2003)Google Scholar
  11. 11.
    Wang, D.: GEOTHER 1.1: Handling and proving geometric theorems automatically. In: Winkler, F. (ed.) ADG 2002. LNCS (LNAI), vol. 2930, pp. 194–215. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Wang, D.: Elimination Practice: Software Tools and Applications. Imperial College Press, London (2004)CrossRefzbMATHGoogle Scholar
  13. 13.
    Weispfenning, V.: Quantifier elimination for real algebra — the cubic case. In: Proceedings of the 1994 International Symposium on Symbolic and Algebraic Computation, Oxford, UK, July 20–22, 1994, pp. 258–263. ACM Press, New York (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hoon Hong
    • 1
  • Liyun Li
    • 2
  • Tielin Liang
    • 3
  • Dongming Wang
    • 2
    • 4
  1. 1.Department of MathematicsNorth Carolina State UniversityRaleighUSA
  2. 2.LMIB – School of ScienceBeihang UniversityBeijingChina
  3. 3.Department of MathematicsUniversity of Science and Technology of ChinaHefeiChina
  4. 4.Laboratoire d’Informatique de Paris 6Université Pierre et Marie Curie – CNRSParisFrance

Personalised recommendations