On the Mixed Cayley-Sylvester Resultant Matrix

  • Weikun Sun
  • Hongbo Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4120)


For a generic n-degree polynomial system which contains n+1 polynomials in n variables, there are two classical resultant matrices, Sylvester resultant matrix and Cayley resultant matrix, lie at the two ends of a gamut of n+1 resultant matrices. This paper gives the construction of the n–1 resultant matrices which lie between the two pure resultant matrices by the combined method of Sylvester dialytic and Cayley quotient. Since the construction involves two steps, Cayley quotient and Sylvester dialytic, the block structure of these mixed resultant matrices are similar to that of Sylvester resultant matrix in large scale, and the detailed submatrices are similar to Dixon resultant matrix.


Mixed Cayley-Sylvester resultant matrix Cayley quotient Sylvester dialytic block structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bernstein, D.N.: The number of roots of a system of equations. Func. Anal. and Appl. 9(2), 183–185 (1975)zbMATHGoogle Scholar
  2. 2.
    Bézout, E.: Théorie Générale des Équations Algébriques, Paris (1770)Google Scholar
  3. 3.
    Cayley, A.: On the theory of elimination. Dublin Math. J. II, 116–120 (1848)Google Scholar
  4. 4.
    Chionh, E.W., Zhang, M., Goldman, R.N.: Block structure of three Dixon resultants and their accompanying transformation Matrices, Technical Report, TR99-341, Department of Computer Science, Rice University (1999)Google Scholar
  5. 5.
    Chionh, E.W., Zhang, M., Goldman, R.N.: Fast computations of the Bezout and the Dixon resultant matrices. J. Symb. Comp. 33(1), 13–29 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Cox, D., Little, J., O’shea, D.: Using Algebraic Geometry. Springer, New York (1998)zbMATHGoogle Scholar
  7. 7.
    Dixon, A.L.: The elimination of three quantics in two independent variables. Proc. London Math. Soc. 6(5), 49–69, 473–492(1908)Google Scholar
  8. 8.
    Emiris, I., Mourrain, B.: Matrices in elimination theory. J. Symb. Comp. 28(1), 3–43 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.Z.: Discriminants, Resultants and Multidimensional Determinants. Birkhäuser, Boston (1994)CrossRefzbMATHGoogle Scholar
  10. 10.
    Hoffman, C.M.: Algebraic and numeric techniques for offsets and blends. In: Dahmen, W., Gasca, M., Micchelli, C. (eds.) Computations of Curves and Surfaces. Kluwer Academic Publishers, Dordrecht (1990)Google Scholar
  11. 11.
    Kapur, D., Saxena, T., Yang, L.: Algebraic and geometric reasoning using the Dixon resultants. In: ACM ISSAC 1994, pp. 99–107. Oxford, England (1994)CrossRefGoogle Scholar
  12. 12.
    Pedersen, P., Sturmfels, B.: Product formulas for resultants and chow forms. Math. Zeitschrift 214, 377–396 (1993)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Sylvester, J.: On a theory of syzygetic relations of two rational integral functions, comprising an application to the theory of sturms functions, and that of the greatest algebraic common measure. Philosophical Trans. 143, 407–548 (1853)CrossRefGoogle Scholar
  14. 14.
    Zhao, S., Fu, H.: An extended fast algorithm for constructing the Dixon resultant matrix. Science in China Series A: Mathematics 48(1), 131–143 (2005)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Weikun Sun
    • 1
  • Hongbo Li
    • 2
  1. 1.Department of Mathematics and PhysicsTianjin University of Technology and EducationTianjinP.R. China
  2. 2.Key Laboratory of Mathematics Mechanization, Academy of Mathematics and Systems ScienceCASBeijingP.R. China

Personalised recommendations