Quantifier Elimination for Quartics

  • Lu Yang
  • Bican Xia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4120)


Concerning quartics, two particular quantifier elimination (QE) problems of historical interests and practical values are studied. We solve the problems by the theory of complete discrimination systems and negative root discriminant sequences for polynomials that provide a method for real (positive/negative) and complex root classification for polynomials. The equivalent quantifier-free formulas are obtained mainly be hand and are simpler than those obtained automatically by previous methods or QE tools. Also, applications of the results to program verification and determination of positivity of symmetric polynomials are showed.


Real Zero Positive Zero Counting Multiplicity Sign List Cylindrical Algebraic Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AH00]
    Anai, H., Hara, S.: Fixed-structure robust controller synthesis based on sign definite condition by a special quantifier elimination. In: Proc. American Control Conference 2000, pp. 1312–1316 (2000)Google Scholar
  2. [ACM84a]
    Arnon, D.S., Collins, G.E., McCallum, S.: Cylindrical algebraic decomposition I: The basic algorithm. SIAM J. Comput. 13, 865–877 (1984)CrossRefMathSciNetGoogle Scholar
  3. [ACM84b]
    Arnon, D.S., Collins, G.E., McCallum, S.: Cylindrical algebraic decomposition II: An adjacency algorithm for the plane. SIAM J. Comput. 13, 878–889 (1984)CrossRefMathSciNetGoogle Scholar
  4. [ACM88]
    Arnon, D.S., Collins, G.E., McCallum, S.: Cylindrical algebraic decomposition III: An adjacency algorithm for three-dimensional space. J. Symb. Comput., 163–187 (1988)Google Scholar
  5. [AM88]
    Arnon, D.S., Mignotte, M.: On mechanical quantifier elimination for elementary algebra and geometry. J. Symb. Comput. 5, 237–260 (1988)CrossRefMathSciNetMATHGoogle Scholar
  6. [BJT99]
    Besson, F., Jensen, T., Talpin, J.-P.: Polyhedral analysis of synchronous languages. In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS, vol. 1694, pp. 51–69. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. [Br01a]
    Brown, C.W.: Simple CAD construction and its applications. J. Symb. Comput. 31, 521–547 (2001)CrossRefMATHGoogle Scholar
  8. [Br01b]
    Brown, C.W.: Improved projection for cylindrical algebraic decomposition. J. Symb. Comput. 32, 447–465 (2001)CrossRefMATHGoogle Scholar
  9. [BM05]
    Brown, C.W., McCallum, S.: On Using Bi-equational Constraints in CAD Construction. In: Kauers, M. (ed.) Proc. ISSAC 2005, pp. 76–83. ACM Press, New York (2005)CrossRefGoogle Scholar
  10. [CJ98]
    Caviness, B.F., Johnson, J.R. (eds.): Quantifier Elimination and Cylindrical Algebraic Decomposition. Springer, Heidelberg (1998)MATHGoogle Scholar
  11. [Co75]
    Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 134–165. Springer, Heidelberg (1975)Google Scholar
  12. [Co98]
    Collins, G.E.: Quantifier elimination by cylindrical algebraic decomposition - 20 years of progress. In: Caviness, B., Johnson, J. (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition, pp. 8–23. Springer, New York (1998)Google Scholar
  13. [CH91]
    Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. J. Symb. Comput. 12, 299–328 (1991)CrossRefMathSciNetMATHGoogle Scholar
  14. [Cou00]
    Cousot, P.: Abstract interpretation based formal methods and future challenges. In: Wilhelm, R. (ed.) Informatics: 10 Years Back, 10 Years Ahead. LNCS, vol. 2000, pp. 138–156. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. [CH78]
    Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among the variables of a program. In: ACM POPL 1978, pp. 84–97 (1978)Google Scholar
  16. [DSW98]
    Dolzmann, A., Sturm, T., Weispfenning, V.: Real quantifier elimination in practice. In: Matzat, B.H., Greuel, G.-M., Hiss, G. (eds.) Algorithmic Algebra and Number Theory, pp. 221–247. Springer, Heidelberg (1998)Google Scholar
  17. [Ga59]
    Gantmacher, F.R.: The Theory of Matrices. Chelsea Publishing Company, New York (1959)MATHGoogle Scholar
  18. [Gon98]
    González-Vega, L.: A Combinatorial Algorithm Solving Some Quantifier Elimination Problems. In: Caviness, B., Johnson, J. (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition, pp. 365–375. Springer, New York (1998)Google Scholar
  19. [GLRR89]
    González-Vega, L., Lombardi, H., Recio, T., Roy, M.-F.: Sturm-Habicht sequence. In: Proc. of ISSAC 1989, pp. 136–146. ACM Press, New York (1989)CrossRefGoogle Scholar
  20. [HPR97]
    Halbwachs, N., Proy, Y.E., Roumanoff, P.: Verification of real-time systems using linear relation analysis. Formal Methods in System Design 11(2), 157–185 (1997)CrossRefGoogle Scholar
  21. [HH95]
    Henzinger, T.A., Ho, P.-H.: Algorithmic analysis of nonlinear hybrid systems. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 225–238. Springer, Heidelberg (1995)Google Scholar
  22. [Hong90]
    Hong, H.: An improvement of the projection operator in cylindrical algebraic decomposition. In: Watanabe, S., Nagata, M. (eds.) Proceedings of ISSAC 1990, pp. 261–264. ACM Press, New York (1990)CrossRefGoogle Scholar
  23. [Hong92]
    Hong, H.: Simple solution formula construction in cylindrical algebraic decomposition based quantifier elimination. In: Wang, P.S. (ed.) Proceedings of ISSAC 1992, pp. 177–188. ACM Press, New York (1992)CrossRefGoogle Scholar
  24. [Hong96]
    Hong, H.: An efficient method for analyzing the topology of plane real algebraic curves. Math. Comput. Simul. 42, 571–582 (1996)CrossRefMATHGoogle Scholar
  25. [La88]
    Lazard, D.: Quantifier elimination: optimal solution for two classical examples. J. Symb. Comput. 5, 261–266 (1988)CrossRefMathSciNetMATHGoogle Scholar
  26. [Mc88]
    McCallum, S.: An improved projection operation for cylindrical algebraic decomposition of three-dimensional space. J. Symb. Comput., 141–161 (1988)Google Scholar
  27. [Mc98]
    McCallum, S.: An improved projection operator for cylindrical algebraic decomposition. In: Caviness, B., Johnson, J. (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition, pp. 242–268. Springer, New York (1998)Google Scholar
  28. [Re92]
    Renegar, J.: On the Computational Complexity and Geometry of the First-order Theory of the Reals. Parts I, II, and III. J. Symb. Comput. 13, 255–352 (1992)MathSciNetCrossRefMATHGoogle Scholar
  29. [Ta51]
    Tarski, A.: A Decision for Elementary Algebra and Geometry. University of California Press, Berkeley (1951)MATHGoogle Scholar
  30. [Tim03]
    Timofte, V.: On the positivity of symmetric polynomial functions. Part I: General results. J. Math. Anal. Appl. 284, 174–190 (2003)CrossRefMathSciNetMATHGoogle Scholar
  31. [Tiw04]
    Tiwari, A.: Termination of linear programs. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 70–82. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  32. [WY00]
    Wang, L., Yu, W.: Complete characterization of strictly positive real regions and robust strictly positive real synthesis method. Science in China 43(E), 97–112 (2000)MATHGoogle Scholar
  33. [WH99]
    Wang, Z.H., Hu, H.Y.: Delay-independent stability of retarded dynamic systems of multiple degrees of freedom. Journal of Sound and Vibration 226(1), 57–81 (1999)CrossRefMathSciNetGoogle Scholar
  34. [WH00]
    Wang, Z.H., Hu, H.Y.: Stability of time-delayed dynamic systems with unknown parameters. Journal of Sound and Vibration 233(2), 215–233 (2000)CrossRefMathSciNetGoogle Scholar
  35. [Wei94]
    Weispfenning, V.: Quantifier elimination for real algebra - the cubic case. In: Proc. ISSAC 1994, pp. 258–263. ACM Press, Oxford (1994)CrossRefGoogle Scholar
  36. [Wei97]
    Weispfenning, V.: Quantifier elimination for real algebra - the quadratic case and beyond. In: AAECC, vol. 8, pp. 85–101 (1997)Google Scholar
  37. [Wei98]
    Weispfenning, V.: A New Approach to Quantifier Elimination for Real Algebra. In: Caviness, B., Johnson, J. (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition, pp. 376–392. Springer, New York (1998)Google Scholar
  38. [Wu92]
    Wu, W.T.: On problems involving inequalities. In: MM-Preprints, (7), pp. 1–13 (1992)Google Scholar
  39. [Yang99]
    Yang, L.: Recent advances on determining the number of real roots of parametric polynomials. J. Symbolic Computation 28, 225–242 (1999)CrossRefMATHGoogle Scholar
  40. [YHX01]
    Yang, L., Hou, X., Xia, B.: A complete algorithm for automated discovering of a class of inequality-type theorems. Sci. in China (Ser. F) 44, 33–49 (2001)CrossRefMathSciNetMATHGoogle Scholar
  41. [YHZ96]
    Yang, L., Hou, X., Zeng, Z.: A complete discrimination system for polynomials. Science in China (Ser. E) 39, 628–646 (1996)MathSciNetMATHGoogle Scholar
  42. [YX00]
    Yang, L., Xia, B.: An explicit criterion to determine the number of roots of a polynomial on an interval. Progress in Natural Science 10(12), 897–910 (2000)MathSciNetGoogle Scholar
  43. [YX05]
    Yang, L., Xia, B.: Real solution classifications of a class of parametric semi-algebraic systems. In: Proc. of Int’l. Conf. on Algorithmic Algebra and Logic, pp. 281–289 (2005)Google Scholar
  44. [YZXZ05]
    Yang, L., Zhan, N., Xia, B., Zhou, C.: Program Verification by Using Discoverer. In: Proc. of the IFIP Working Conference on Verified Software: Tools, Techniques and Experiments, Zurich, October 10-13 (to appear, 2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Lu Yang
    • 1
  • Bican Xia
    • 2
  1. 1.Guangzhou UniversityGuangzhouChina
  2. 2.School of Mathematical SciencesPeking UniversityChina

Personalised recommendations