On the Logic and Computation of Partial Equilibrium Models

  • Pedro Cabalar
  • Sergei Odintsov
  • David Pearce
  • Agustín Valverde
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4160)


The nonmonotonic formalism of partial equilibrium logic (PEL) has recently been proposed as a logical foundation for the partial stable and well-founded semantics of logic programs [1,2]. We study certain logical properties of PEL and some techniques to compute partial equilibrium models.


Logic Program Partial Equilibrium Total Model Disjunctive Program Partial Equilibrium Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cabalar, P., Odintsov, S., Pearce, D.: Logical Foundations of Well-Founded Semantics. In: Proceedings KR 2006, pp. 25–35. AAAI, Menlo Park (2006)Google Scholar
  2. 2.
    Cabalar, P., Odintsov, S., Pearce, D.J., Valverde, A.: Analysing and Extending Well-Founded and Partial Stable Semantics Using Partial Equilibrium Logic. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS (LNAI), vol. 4079, pp. 346–360. Springer, Heidelberg (to appear, 2006)CrossRefGoogle Scholar
  3. 3.
    Erdogan, S.T., Lifschitz, V.: Definitions in Answer Set Programming. In: Lifschitz, V., Niemela, I. (eds.) Proc. ICLP 2004, vol. 2923, pp. 114–126. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Hähnle, R.: Automated Deduction in Multiple-Valued Logics. International Series of Monographs on Computer Science, vol. 10. Oxford University Press, Oxford (1994)Google Scholar
  5. 5.
    Lifschitz, V., Turner, H.: Splitting a Logic Program. In: van Hentenryck, P. (ed.) Proceedings ICLP 1994, pp. 23–37. MIT Press, Cambridge (1994)Google Scholar
  6. 6.
    Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Transactions on Computational Logic 2(4), 526–541 (2001)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Annals of Mathematics and Artificial Intelligence 25(3-4), 369–389 (1999)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Pearce, D.: A new logical characterisation of stable models and answer sets. In: Dix, J., Przymusinski, T.C., Moniz Pereira, L. (eds.) NMELP 1996. LNCS, vol. 1216, pp. 57–70. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  9. 9.
    Pearce, D.: Equilibrium Logic. Ann. Math. & Artificial Int. (to appear, 2006)Google Scholar
  10. 10.
    Pearce, D., de Guzmán, I.P., Valverde, A.: A tableau calculus for equilibrium entailment. In: Dyckhoff, R. (ed.) TABLEAUX 2000. LNCS (LNAI), vol. 1847, pp. 352–367. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Pearce, D.J., Valverde, A.: Uniform equivalence for equilibrium logic and logic programs. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 194–206. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Przymusinski, T.: Stable semantics for disjunctive programs. New Generation Computing 9, 401–424 (1991)CrossRefGoogle Scholar
  13. 13.
    Przymusinski, T.: Well-founded and stationary models of logic programs. Annals of Mathematics and Artificial Intelligence 12, 141–187 (1994)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Routley, R., Routley, V.: The Semantics of First Degree Entailment. Noûs 6, 335–359 (1972)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Vakarelov, D.: Notes on constructive logic with strong negation. Studia Logica 36, 89–107 (1977)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    van Gelder, A., Ross, K.A., Schlipf, J.S.: Unfounded sets and well-founded semantics for general logic programs. J. ACM 38(3), 620–650 (1991)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Pedro Cabalar
    • 1
  • Sergei Odintsov
    • 2
  • David Pearce
    • 3
  • Agustín Valverde
    • 4
  1. 1.Corunna UniversityCorunnaSpain
  2. 2.Sobolev Institute of MathematicsNovosibirskRussia
  3. 3.Universidad Rey Juan CarlosMadridSpain
  4. 4.University of MálagaMálagaSpain

Personalised recommendations