Incomplete Knowledge in Hybrid Probabilistic Logic Programs

  • Emad Saad
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4160)


Although negative conclusions are presented implicitly in Normal Hybrid Probabilistic Programs (NHPP) [26] through the closed world assumption, representing and reasoning with explicit negation is needed in NHPP to allow the ability to reason with incomplete knowledge. In this paper we extend the language of NHPP to explicitly encode classical negation in addition to non-monotonic negation. The semantics of the extended language is based on the answer set semantics of traditional logic programming [9]. We show that the proposed semantics is a natural extension to the answer set semantics of traditional logic programming [9]. In addition, the proposed semantics is reduced to stable probabilistic model semantics of NHPP [26]. The importance of that is computational methods developed for NHPP can be applied to the proposed language. Furthermore, we show that some commonsense probabilistic knowledge can be easily represented in the proposed language.


Logic Program Logic Programming Classical Negation Incomplete Knowledge Probability Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baral, C.: Knowledge representation, reasoning, and declarative problem solving. Cambridge University Press, Cambridge (2003)MATHCrossRefGoogle Scholar
  2. 2.
    Baral, C., et al.: Probabilistic reasoning with answer sets. In: 7th International Conference on Logic Programming and Nonmonotonic Reasoning. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Viegas Damásio, C., Moniz Pereira, L., Swift, T.: Coherent well-founded annotated logic programs. In: Gelfond, M., Leone, N., Pfeifer, G. (eds.) LPNMR 1999. LNCS, vol. 1730, p. 262. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Dekhtyar, A., Dekhtyar, I.: Possible worlds semantics for probabilistic logic programs. In: International Conference on Logic Programming, pp. 137–148 (2004)Google Scholar
  5. 5.
    Dekhtyar, A., Subrahmanian, V.S.: Hybrid probabilistic program. Journal of Logic Programming 43(3), 187–250 (2000)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dekhtyar, M., Dekhtyar, A., Subrahmanian, V.S.: Hybrid Probabilistic Programs: Algorithms and Complexity. In: Proc. of UAI Conference, pp. 160–169 (1999)Google Scholar
  7. 7.
    Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic programs. Journal of ACM 38(3), 620–650 (1991)MATHGoogle Scholar
  8. 8.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: ICSLP. MIT Press, Cambridge (1988)Google Scholar
  9. 9.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9(3-4), 363–385 (1991)CrossRefGoogle Scholar
  10. 10.
    Kersting, K., De Raedt, L.: Bayesian Logic Programs. In: Inductive LP (2000)Google Scholar
  11. 11.
    Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic programming and its applications. Journal of Logic Programming 12, 335–367 (1992)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Lakshmanan, L.V.S., Sadri, F.: On a theory of probabilistic deductive databases. Journal of Theory and Practice of Logic Programming 1(1), 5–42 (2001)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Loyer, Y., Straccia, U.: The well-founded semantics in normal logic programs with uncertainty. In: Hu, Z., Rodríguez-Artalejo, M. (eds.) FLOPS 2002. LNCS, vol. 2441. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Loyer, Y., Straccia, U.: The approximate well-founded semantics for logic programs with uncertainty. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 541–550. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Lukasiewicz, T.: Probabilistic logic programming. In: 13th European Conference on Artificial Intelligence, pp. 388–392 (1998)Google Scholar
  16. 16.
    Muggleton, S.: Stochastic logic programming. In: Proceedings of the 5th International Workshop on Inductive Logic Programming (1995)Google Scholar
  17. 17.
    Ng, R.T., Subrahmanian, V.S.: Probabilistic logic programming. Information & Computation 101(2) (1992)Google Scholar
  18. 18.
    Ng, R.T., Subrahmanian, V.S.: A semantical framework for supporting subjective and conditional probabilities in deductive databases. ARJ 10(2) (1993)Google Scholar
  19. 19.
    Ng, R.T., Subrahmanian, V.S.: Stable semantics for probabilistic deductive databases. Information & Computation 110(1) (1994)Google Scholar
  20. 20.
    Nicolas, P., Garcia, L., Stphan, I.: Possibilistic stable models. In: International Joint Conference on Artificial Intelligence (2005)Google Scholar
  21. 21.
    Niemela, I., Simons, P.: Efficient implementation of the well-founded and stable model semantics. In: Joint International Conference and Symposium on Logic Programming, pp. 289–303 (1996)Google Scholar
  22. 22.
    Pearl, J.: Causality. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  23. 23.
    Poole, D.: The Independent choice logic for modelling multiple agents under uncertainty. Artificial Intelligence 94(1-2), 7–56 (1997)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Poole, D.: Abducing through negation as failure: stable models within the independent choice logic. Journal of Logic Programming 44, 5–35 (2000)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Saad, E., Pontelli, E.: Towards a more practical hybrid probabilistic logic programming framework. In: Hermenegildo, M.V., Cabeza, D. (eds.) PADL 2004. LNCS, vol. 3350, pp. 67–82. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Saad, E., Pontelli, E.: Hybrid probabilistic logic programs with non-monotonic negation. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 204–220. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  27. 27.
    Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated disjunctions. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 431–445. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Emad Saad
    • 1
  1. 1.College of Computer Science and Information TechnologyAbu Dhabi UniversityAbu DhabiUAE

Personalised recommendations