Advertisement

Knowledge Base Revision in Description Logics

  • Guilin Qi
  • Weiru Liu
  • David A. Bell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4160)

Abstract

Ontology evolution is an important problem in the Semantic Web research. Recently, Alchourrón, Gärdenfors and Markinson’s (AGM) theory on belief change has been applied to deal with this problem. However, most of current work only focuses on the feasibility of the application of AGM postulates on contraction to description logics (DLs), a family of ontology languages. So the explicit construction of a revision operator is ignored. In this paper, we first generalize the AGM postulates on revision to DLs. We then define two revision operators in DLs. One is the weakening-based revision operator which is defined by weakening of statements in a DL knowledge base and the other is its refinement. We show that both operators capture some notions of minimal change and satisfy the generalized AGM postulates for revision.

Keywords

Description Logic Conjunctive Normal Form Belief Change Ontology Evolution Revision Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge representation formalisms. Journal of Automated Reasoning 14(1), 149–180 (1995)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Baader, F., Buchheit, M., Hollander, B.: Cardinality restrictions on concepts. Artificial Intelligence 88, 195–213 (1996)CrossRefMATHGoogle Scholar
  3. 3.
    Baader, F., McGuiness, D.L., Nardi, D., Patel-Schneider, P.: The Description Logic Handbook: Theory, implementation and application. Cambridge University Press, Cambridge (2003)Google Scholar
  4. 4.
    Benferhat, S., Baida, R.E.: A stratified first order logic approach for access control. International Journal of Intelligent Systems 19, 817–836 (2004)CrossRefMATHGoogle Scholar
  5. 5.
    Dalal, M.: Investigations into a theory of knowledge base revision: Preliminary report. In: Proc. of AAAI 1988, pp. 3–7 (1988)Google Scholar
  6. 6.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American 284(5), 3443 (2001)CrossRefGoogle Scholar
  7. 7.
    Flouris, G., Plexousakis, D., Antoniou, G.: Generalizing the AGM postulates: preliminary results and applications. In: Proc. of NMR 2004, pp. 171–179 (2004)Google Scholar
  8. 8.
    Flouris, G., Plexousakis, D., Antoniou, G.: On applying the AGM theory to dLs and OWL. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 216–231. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Gärdenfors, P.: Knowledge in Flux-Modeling the Dynamic of Epistemic States. The MIT Press, Cambridge (1988)Google Scholar
  10. 10.
    Haase, P., Stojanovic, L.: Consistent evolution of OWL ontologies. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 182–197. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Haase, P., van Harmelen, F., Huang, Z., Stuckenschmidt, H., Sure, Y.: A framework for handling inconsistency in changing ontologies. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 353–367. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Hansson, S.O.: In denfence of base contraction. Synthese 91, 239–245 (1992)CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Horrocks, I., Sattler, U.: Ontology reasoning in the SHOQ(D) description logic. In: Proc. of IJCAI 2001, pp. 199–204 (2001)Google Scholar
  14. 14.
    Huang, Z., van Harmelen, F., ten Teije, A.: Reasoning with inconsistent ontologies. In: Proc. of IJCAI 2005, pp. 254–259 (2005)Google Scholar
  15. 15.
    Liu, H., Lutz, C., Miličić, M., Wolter, F.: Updating description logic ABoxes. In: Proc. of KR 2006 (2006)Google Scholar
  16. 16.
    Kang, S.H., Lau, S.K.: Ontology revision using the concept of belief revision. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds.) KES 2004. LNCS, vol. 3214, pp. 261–267. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Katsuno, H., Mendelzon, A.O.: Propositional Knowledge Base Revision and Minimal Change. Artificial Intelligence 52(3), 263–294 (1992)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Lutz, C., Areces, C., Horrocks, I., Sattler, U.: Keys, nominals, and concrete domains. Journal of Artificial Intelligence Research 23, 667–726 (2005)MathSciNetGoogle Scholar
  19. 19.
    Meyer, T., Lee, K., Booth, R.: Knowledge integration for description logics. In: Proc. of AAAI 2005, pp. 645–650 (2005)Google Scholar
  20. 20.
    Nebel, B.: Reasoning and Revision in Hybrid Representation Systems. LNCS (LNAI), vol. 422. Springer, Heidelberg (1990)MATHGoogle Scholar
  21. 21.
    Nebel, B.: What is Hybrid in Hybrid Representation and Reasoning Systems? In: Gardin, F., Mauri, G., Filippini, M.G. (eds.) Computational Intelligence II: Proc. of the International Symposium Computational Intelligence 1989, pp. 217–228. North-Holland, Amsterdam (1990)Google Scholar
  22. 22.
    Parsia, B., Sirin, E., Kalyanpur, A.: Debugging OWL ontologies. In: Proc. of WWW 2005, pp. 633–640 (2005)Google Scholar
  23. 23.
    Qi, G., Liu, W., Bell, D.A.: Knowledge base revision in description logics, Available at: http://www.cs.qub.ac.uk/G.Qi/qlb06e.pdf
  24. 24.
    Schaerf, A.: Reasoning with individuals in concept languages. Data and Knowledge Engineering 13(2), 141–176 (1994)CrossRefGoogle Scholar
  25. 25.
    Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of description logic terminologies. In: Proc. of IJCAI 2003, pp. 355–360 (2003)Google Scholar
  26. 26.
    Schmidt-Schauß, M., Smolka, G.: Attributive Concept descriptions with complements. Artificial Intelligence 48, 1–26 (1991)CrossRefMathSciNetMATHGoogle Scholar
  27. 27.
    Stojanovic, L.: Methods and Tools for Ontology Evolution, PhD thesis, University of Karlsruhe (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Guilin Qi
    • 1
  • Weiru Liu
    • 1
  • David A. Bell
    • 1
  1. 1.School of Electronics, Electrical Engineering and Computer ScienceQueen’s University BelfastUK

Personalised recommendations