A Fault-Tolerant Default Logic

  • Zhangang Lin
  • Yue Ma
  • Zuoquan Lin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4160)


Reiter’s default logic can not handle inconsistencies and incoherences and thus is not satisfactory enough in commonsense reasoning. In the paper we propose a new variant of default logic named FDL in which the existence of extension is guaranteed and the trivial extension is avoided. Moreover, Reiter’s default extensions are reserved and can be identified from the other extensions in FDL. Technically, we develop a paraconsistent and monotonic reasoning system based on resolution as the underlying logic of FDL. The definition of extension is also modified in the manner that conflicts between justifications of the used defaults and the conclusions of the extension, which we call justification conflicts, are permitted, so that justifications can not be denied by “subsequent” defaults and the existence of extension is guaranteed. Then we select the desired extensions as preferred ones according to the criteria that justification conflicts should be minimal.


Default Theory Paraconsistent Logic Default Logic Nonmonotonic Reasoning Underlying Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Reiter, R.: A logic for default reasoning. Artificial Intelligence 13, 81–132 (1980)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Papadimitriou, C.H., Sideri, M.: Default theories that always have extensions. Artificial Intelligence 69(1-2), 347–357 (1994)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cholewinski, P.: Reasoning with stratified default theories. Logic Programming and Nonmonotonic Reasoning 928, 273–286 (1995)MathSciNetGoogle Scholar
  4. 4.
    Linke, T., Schaub, T.: Alternative foundations for Reiter’s default logic. Artificial Intelligence 124(1), 31–86 (2000)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    daCosta, N.: Theory of inconsistent formal systems. Notre Dame Journal of Formal Logic 15, 497–510 (1974)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Lin, Z., Li, W.: On logic of paradox. In: Proceedings of the 25th IEEE International Symposium on Multipl-Valued Logic, pp. 248–255 (1995)Google Scholar
  7. 7.
    Lin, Z.: Paraconsistent circumscription. Journal of Pattern Recognition and Artificial Intelligence 10(6), 679–686Google Scholar
  8. 8.
    Besnard, P., Schaub, T.: Signed system for paraconsistent reasoning. Journal of Automated Reasoning 20(1-2), 191–213 (1998)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Belnap, N.: How computer should think. In: Contemporary Aspects of Philosophy, pp. 7–37 (1977)Google Scholar
  10. 10.
    Belnap, N.: A useful four-valued logic. In: Modern uses of multiple-valued logic, pp. 30–56 (1977)Google Scholar
  11. 11.
    Arieli, O., Avron, A.: The value of the four values. Artificial Intelligence 102(1), 97–141 (1998)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Ginsberg, M.L.: Multivalued logics: a uniform approach to reasoning in artificial intelligence. Computational Intelligence 4, 265–316 (1988)CrossRefGoogle Scholar
  13. 13.
    Han, Q., Lin, Z.: Paraconsistent default reasoning. In: 10th International Workshop on Non-Monotonic Reasoning, pp. 197–203 (2004)Google Scholar
  14. 14.
    Yue, A., Lin, Z.: Default logic based on four valued semantics. Chinese journal of computer 28(9), 1447–1458 (2005)MathSciNetGoogle Scholar
  15. 15.
    Lukaszewicz, W.: Considerations on default logic: an alternative approach. Computational Intelligence 4(1), 1–16 (1988)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Schaub, T.: On constrained default theories. In: ECAI, pp. 304–308 (1992)Google Scholar
  17. 17.
    Brewka, G.: Cumulative default logic: in defense of nonmonotonic inference rules. Artificial Intelligence 50(2), 183–205 (1991)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Shoham, Y.: A semantical approach to nonmonotonic logics. In: Ginsberg, M.L. (ed.) Readings in Nonmonotonic Reasoning, pp. 227–250. Kaufmann, Los Altos (1987)Google Scholar
  19. 19.
    Shoham, Y.: Reasoning about change: time and causation from the standpoint of artificial intelligence. MIT Press, Cambridge (1988)Google Scholar
  20. 20.
    Lehmann, D.J.: Plausibility logic. In: Kleine Büning, H., Jäger, G., Börger, E., Richter, M.M. (eds.) CSL 1991. LNCS, vol. 626, pp. 227–241. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  21. 21.
    Marek, W., Truszczyński, M.: Nonmonotonic logic: Context-dependent reasoning, pp. 61–62. Springer, Berlin (1994)Google Scholar
  22. 22.
    Antoniou, G., Sperschneider, V.: Operational concepts of nonmonotonic logics, part 1: Default logic. Artificial Intelligence 8(1), 3–16 (1994)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Zhangang Lin
    • 1
  • Yue Ma
    • 1
  • Zuoquan Lin
    • 1
  1. 1.School of Mathematical SciencesPeking UniversityBeijingChina

Personalised recommendations