Analytic Tableau Calculi for KLM Rational Logic R

  • Laura Giordano
  • Valentina Gliozzi
  • Nicola Olivetti
  • Gian Luca Pozzato
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4160)


In this paper we present a tableau calculus for the rational logic R of default reasoning, introduced by Kraus, Lehmann and Magidor. Our calculus is obtained by introducing suitable modalities to interpret conditional assertions, and makes use of labels to represent possible worlds. We also provide a decision procedure for R and study its complexity.


Modal Logic Propositional Formula Rational Logic Boolean Combination Nonmonotonic Reasoning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44(1-2), 167–207 (1990)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Gardenförs, P.: Knowledge in Flux. MIT Press, Cambridge (1988)Google Scholar
  3. 3.
    Friedman, N., Halpern, J.Y.: Plausibility measures and default reasoning. Journal of the ACM 48(4), 648–685 (2001)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Friedman, N., Halpern, J.Y., Koller, D.: First-order conditional logic for default reasoning revisited. ACM TOCL 1(2), 175–207 (2000)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Benferhat, S., Dubois, D., Prade, H.: Nonmonotonic reasoning, conditional objects and possibility theory. Artificial Intelligence 92(1-2), 259–276 (1997)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Benferhat, S., Saffiotti, A., Smets, P.: Belief functions and default reasoning. Artificial Intelligence 122(1-2), 1–69 (2000)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Weydert, E.: System jlz - rational default reasoning by minimal ranking constructions. Journal of Applied Logic 1(3-4), 273–308 (2003)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Pearl, J.: System z: A natural ordering of defaults with tractable applications to nonmonotonic reasoning. In: Proc. of the 3rd Conference on Theoretical Aspects of Reasoning about Knowledge, pp. 121–135. Morgan Kaufmann Publishers Inc., San Francisco (1990)Google Scholar
  9. 9.
    Makinson, D.: Bridges from Classical to Nonmonotonic logic. Texts in Computing, vol. 5. King’s College Publications, London (2005)Google Scholar
  10. 10.
    Makinson, D.: Bridges between classical and nonmonotonic logic. Logic Journal of the IGPL 11(1), 69–96 (2003)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Arieli, O., Avron, A.: General patterns for nonmonotonic reasoning: From basic entailments to plausible relations. Logic Journal of the IGPL 8(2), 119–148 (2000)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Dubois, D., Fargier, H., Perny, P., Prade, H.: Qualitative decision theory: from savages axioms to nonmonotonic reasoning. Journal of the ACM 49(4), 455–495 (2002)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Dubois, D., Fargier, H., Perny, P.: Qualitative decision theory with preference relations and comparative uncertainty: An axiomatic approach. Art. Int. 148(1-2), 219–260 (2003)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artificial Intelligence 55(1), 1–60 (1992)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Analytic Tableaux for KLM Preferential and Cumulative Logics. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 666–681. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Crocco, G., Lamarre, P.: On the connection between non-monotonic inference systems and conditional logics. In: Proc. of KR 1992, pp. 565–571 (1992)Google Scholar
  17. 17.
    Boutilier, C.: Conditional logics of normality: a modal approach. Art. Int. 68(1), 87–154 (1994)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Hughes, G., Cresswell, M.: A Companion to Modal Logic. Methuen (1984)Google Scholar
  19. 19.
    Artosi, A., Governatori, G., Rotolo, A.: Labelled tableaux for non-monotonic reasoning: Cumulative consequence relations. J. of Logic and Computation 12(6), 1027–1060 (2002)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Giordano, L., Gliozzi, V., Olivetti, N., Schwind, C.: Tableau calculi for preference-based conditional logics. In: Cialdea Mayer, M., Pirri, F. (eds.) TABLEAUX 2003. LNCS (LNAI), vol. 2796, pp. 81–101. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Giordano, L., Gliozzi, V., Olivetti, N., Schwind, C.: Extensions of tableau calculi for preference-based conditional logics. In: Proc. of M4M-4, Informatik-Bericht, vol. 194, pp. 220–234 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Laura Giordano
    • 1
  • Valentina Gliozzi
    • 2
  • Nicola Olivetti
    • 3
  • Gian Luca Pozzato
    • 2
  1. 1.Dipartimento di InformaticaUniversità del Piemonte Orientale A. AvogadroAlessandriaItaly
  2. 2.Dipartimento di InformaticaUniversità degli Studi di TorinoTurinItaly
  3. 3.LSISUMR CNRS 6168 Université Paul CézanneMarseilleFrance

Personalised recommendations