Advertisement

Representing Action Domains with Numeric-Valued Fluents

  • Esra Erdem
  • Alfredo Gabaldon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4160)

Abstract

We present a general method to formalize action domains with numeric-valued fluents whose values are incremented or decremented by executions of actions, and show how it can be applied to the action description language \(\cal C+\) and to the concurrent situation calculus. This method can handle nonserializable concurrent actions, as well as ramifications on numeric-valued fluents, which are described in terms of some new causal structures, called contribution rules.

Keywords

Action Domain Action Constant Action Language Concurrent Action Action Description 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Koehler, J.: Planning under resource constraints. In: Proc. ECAI, pp. 489–493 (1998)Google Scholar
  2. 2.
    Kvarnström, J., Doherty, P., Haslum, P.: Extending TALplanner with concurrency and resources. In: Proc. ECAI, pp. 501–505 (2000)Google Scholar
  3. 3.
    Bacchus, F., Ady, M.: Planning with resources and concurrency: A forward chaining approach. In: Proc. IJCAI, pp. 417–424 (2001)Google Scholar
  4. 4.
    Lee, J., Lifschitz, V.: Describing additive fluents in action language \(\cal C\)+. In: Proc. IJCAI (2003)Google Scholar
  5. 5.
    Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories. AIJ 153, 49–104 (2004)MATHMathSciNetGoogle Scholar
  6. 6.
    Baral, C., Son, T.C., Tuan, L.: A transition function based characterization of actions with delayed and continuous effects. In: Proc. KR (2002)Google Scholar
  7. 7.
    Gelfond, M., Lifschitz, V.: Action languages. ETAI 3, 195–210 (1998)Google Scholar
  8. 8.
    Erdem, E., Gabaldon, A.: Cumulative effects of concurrent actions on numeric-valued fluents. In: Proc. AAAI, pp. 627–632 (2005)Google Scholar
  9. 9.
    Reiter, R.: Knowledge in action: Logical Foundations for specifying and implementing dynamical systems. MIT Press, Cambridge (2001)MATHGoogle Scholar
  10. 10.
    Lin, F.: Embracing causality in specifying the indirect effects of actions. In: Proc. IJCAI, pp. 1985–1991 (1995)Google Scholar
  11. 11.
    McCain, N., Turner, H.: A causal theory of ramifications and qualifications. In: Proc. IJCAI, pp. 1978–1984 (1995)Google Scholar
  12. 12.
    Thielscher, M.: Ramification and causality. AIJ 89, 317–364 (1997)MATHMathSciNetGoogle Scholar
  13. 13.
    de Kleer, J., Brown, J.S.: A qualitative physics based on confluences. AIJ 24, 7–83 (1984)Google Scholar
  14. 14.
    Iwasaki, Y., Simon, H.: Causality in device behavior. AIJ 29, 3–32 (1986)Google Scholar
  15. 15.
    Giunchiglia, E., Lifschitz, V.: Action languages, temporal action logics and the situation calculus. In: Proc. NRAC (1999)Google Scholar
  16. 16.
    Halpern, J., Pearl, J.: Causes and explanations: a structural-model approach–Part I: Causes. In: Proc. UAI, pp. 194–202 (2001)Google Scholar
  17. 17.
    Doherty, P., Gustafsson, J., Karlsson, L., Kvarnstrom, J. (TAL) Temporal Action Logics: Language specification and tutorial. ETAI 2, 273–306 (1998)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Esra Erdem
    • 1
  • Alfredo Gabaldon
    • 2
    • 3
  1. 1.Institute of Information SystemsVienna University of TechnologyViennaAustria
  2. 2.National ICTAustralia
  3. 3.School of Comp. Sci. and Eng.UNSWSydneyAustralia

Personalised recommendations