Modal Logics of Negotiation and Preference

  • Ulle Endriss
  • Eric Pacuit
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4160)


We develop a dynamic modal logic that can be used to model scenarios where agents negotiate over the allocation of a finite number of indivisible resources. The logic includes operators to speak about both preferences of individual agents and deals regarding the reallocation of certain resources. We reconstruct a known result regarding the convergence of sequences of mutually beneficial deals to a Pareto optimal allocation of resources, and discuss the relationship between reasoning tasks in our logic and problems in negotiation. For instance, checking whether a given restricted class of deals is sufficient to guarantee convergence to a Pareto optimal allocation for a specific negotiation scenario amounts to a model checking problem; and the problem of identifying conditions on preference relations that would guarantee convergence for a restricted class of deals under all circumstances can be cast as a question in modal logic correspondence theory.


Model Check Modal Logic Atomic Proposition Kripke Structure Pareto Improvement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sandholm, T.W.: Contract types for satisficing task allocation: I Theoretical results. In: Proc. AAAI Spring Symposium: Satisficing Models (1998)Google Scholar
  2. 2.
    Endriss, U., Maudet, N., Sadri, F., Toni, F.: Negotiating socially optimal allocations of resources. Journal of Artificial Intelligence Research 25, 315–348 (2006)MathSciNetGoogle Scholar
  3. 3.
    Dunne, P.E., Wooldridge, M., Laurence, M.: The complexity of contract negotiation. Artificial Intelligence 164(1-2), 23–46 (2005)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Parikh, R.: Social software. Synthese 132, 187–211 (2002)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Pacuit, E., Parikh, R.: Social interaction, knowledge, and social software. In: Interactive Computation: The New Paradigm. Springer, Heidelberg (forthcoming)Google Scholar
  6. 6.
    Pauly, M., Wooldridge, M.: Logic for mechanism design: A manifesto. In: Proc. 5th Workshop on Game-theoretic and Decision-theoretic Agents (2003)Google Scholar
  7. 7.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2002)Google Scholar
  8. 8.
    Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Boston (2000)MATHGoogle Scholar
  9. 9.
    Moulin, H.: Axioms of Cooperative Decision Making. Cambridge University Press, Cambridge (1988)MATHGoogle Scholar
  10. 10.
    van Benthem, J., van Otterloo, S., Roy, O.: Preference logic, conditionals and solution concepts in games. In: Modality Matters: Twenty-Five Essays in Honour of Krister Segerberg, University of Uppsala (2006)Google Scholar
  11. 11.
    Hansson, S.O.: Preference logic. In: Handbook of Philosophical Logic, 2nd edn. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  12. 12.
    Dunne, P.E., Chevaleyre, Y.: Negotiation can be as hard as planning: Deciding reachability properties of distributed negotiation schemes. Technical Report ULCS-05-009, Department of Computer Science, University of Liverpool (2005)Google Scholar
  13. 13.
    Lange, M.: Model checking propositional dynamic logic with all extras. Journal of Applied Logic 4(1), 39–49 (2005)CrossRefGoogle Scholar
  14. 14.
    Chevaleyre, Y., Endriss, U., Lang, J., Maudet, N.: Negotiating over small bundles of resources. In: Proc. 4th International Joint Conference on Autonomous Agents and Multiagent Systems. ACM Press, New York (2005)Google Scholar
  15. 15.
    Passy, S., Tinchev, T.: An essay in combinatory dynamic logic. Information and Computation 93(2), 263–332 (1991)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Balbiani, P., Vakarelov, D.: Iteration-free PDL with intersection: A complete axiomatization. Fundamenta Informaticae 45, 1–22 (2001)MathSciNetGoogle Scholar
  17. 17.
    Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. Journal of Computer and System Sciences 18(2), 194–211 (1979)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Pratt, V.R.: Semantical considerations on Floyd-Hoare logic. In: Proc. 17th Annual Symposium on Foundations of Computer Science, pp. 109–121. IEEE, Los Alamitos (1976)Google Scholar
  19. 19.
    Lutz, C., Walther, D.: PDL with negation of atomic programs. Journal of Applied Non-Classical Logics 15(2), 189–214 (2005)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Danecki, R.: Non-deterministic propositional dynamic logic with intersection is decidable. In: Proc. 5th Workshop on Computation Theory. Springer, Heidelberg (1985)Google Scholar
  21. 21.
    Lange, M., Lutz, C.: 2-EXPTIME lower bounds for propositional dynamic logics with intersection. Journal of Symbolic Logic 70(4), 1072–1086 (2005)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ulle Endriss
    • 1
  • Eric Pacuit
    • 1
  1. 1.Institute for Logic, Language and ComputationUniversity of Amsterdam 

Personalised recommendations