Decidable Fragments of Logic Programming with Value Invention

  • Francesco Calimeri
  • Susanna Cozza
  • Giovambattista Ianni
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4160)


The issue of value invention in logic programming embraces many scenarios, such as logic programming with function symbols, object oriented logic languages, inter-operability with external sources of knowledge, set unification. This paper introduces a framework embedding value invention in a general context. The class of programs having a suitable (but, in general, not decidable) ‘finite grounding property’ is identified, and the class of ‘value invention restricted’ programs is introduced. Value invention restricted programs have the finite grounding property and can be decided in polynomial time. They are, in a sense, the broadest polynomially decidable class having this property, whenever no assumption can be made about the nature of invented values (while this latter is the case in the specific literature about logic programming with function symbols). Relationships with existing formalisms are eventually discussed; in particular, value invention restricted programs subsume ω-restricted programs and are incomparable with finitary programs.


Logic Program Logic Programming Function Symbol Ground Program Functional Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abiteboul, S., Vianu, V.: Datalog Extensions for Database Queries and Updates. JCSS 43(1), 62–124 (1991)MATHMathSciNetGoogle Scholar
  2. 2.
    Cabibbo, L.: Expressiveness of Semipositive Logic Programs with Value Invention. Logic in Databases, 457–474 (1996)Google Scholar
  3. 3.
    Hull, R., Yoshikawa, M.: ILOG: Declarative Creation and Manipulation of Object Identifiers. In: VLDB 1990, pp. 455–468 (1990)Google Scholar
  4. 4.
    Eiter, T., et al.: A Uniform Integration of Higher-Order Reasoning and External Evaluations in Answer Set Programming. In: IJCAI 2005, pp. 90–96 (2005)Google Scholar
  5. 5.
    Heymans, S., Van Nieuwenborgh, D., Vermeir, D.: Nonmonotonic ontological and rule-based reasoning with extended conceptual logic programs. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 392–407. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Leone, N., et al.: The DLV System for Knowledge Representation and Reasoning. ACM TOCL (to appear, 2006),
  7. 7.
    Simons, P., Niemelä, I., Soininen, T.: Extending and Implementing the Stable Model Semantics. Artificial Intelligence 138, 181–234 (2002)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Calimeri, F., Ianni, G.: External Sources of Computation for Answer Set Solvers. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS, vol. 3662, pp. 105–118. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Syrjänen, T.: Omega-restricted logic programs. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS, vol. 2173, pp. 267–279. Springer, Heidelberg (2001)Google Scholar
  10. 10.
    Bonatti, P.A.: Reasoning with Infinite Stable Models. In: IJCAI 2001, pp. 603–610 (2001)Google Scholar
  11. 11.
    The Friend of a Friend (FOAF) Project,
  12. 12.
    Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases. New Generation Computing 9, 365–385 (1991)CrossRefGoogle Scholar
  13. 13.
    Lifschitz, V., Turner, H.: Splitting a Logic Program. In: ICLP 1994, pp. 23–37 (1994)Google Scholar
  14. 14.
    Dovier, A., Pontelli, E., Rossi, G.: Set unification. In: TPLP (to appear, 2006)Google Scholar
  15. 15.
    Heymans, S., Van Nieuwenborgh, D., Vermeir, D.: Semantic web reasoning with conceptual logic programs. In: Antoniou, G., Boley, H. (eds.) RuleML 2004. LNCS, vol. 3323, pp. 113–127. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Cabibbo, L.: The Expressive Power of Stratified Logic Programs with Value Invention. Inf. and Comp. 147(1), 22–56 (1998)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: Nonmonotonic description logic programs: Implementation and experiments. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS, vol. 3452, pp. 511–527. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Francesco Calimeri
    • 1
  • Susanna Cozza
    • 1
  • Giovambattista Ianni
    • 1
  1. 1.Dipartimento di MatematicaUniversità della CalabriaRende (CS)Italy

Personalised recommendations