From Inductive Logic Programming to Relational Data Mining

  • Sašo Džeroski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4160)


Situated at the intersection of machine learning and logic programming, inductive logic programming (ILP) has been concerned with finding patterns expressed as logic programs. While ILP initially focussed on automated program synthesis from examples, it has recently expanded its scope to cover a whole range of data analysis tasks (classification, regression, clustering, association analysis). ILP algorithms can this be used to find patterns in relational data, i.e., for relational data mining (RDM). This paper briefly introduces the basic concepts of ILP and RDM and discusses some recent research trends in these areas.


Association Rule Logic Program Inductive Logic Inductive Logic Programming Inductive Logic Programming System 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blockeel, H., De Raedt, L.: Top-down induction of first order logical decision trees. Artificial Intelligence 101, 285–297 (1998)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Blockeel, H., Sebag, M.: Scalability and Efficiency in Multi-Relational Data Mining. SIGKDD Explorations 5(1), 17–30 (2003)CrossRefGoogle Scholar
  3. 3.
    Bratko, I.: Prolog Programming for Artificial Intelligence, 3rd edn. Addison-Wesley, Harlow (2001)Google Scholar
  4. 4.
    Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees, Wadsworth, Belmont (1984)Google Scholar
  5. 5.
    de Castro Dutra, I., Page, D.L., Santos Costa, V., Shavlik, J.: An Empirical Evaluation of Bagging in Inductive Logic Programming. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS, vol. 2583, pp. 48–65. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Clark, P., Boswell, R.: Rule induction with CN2: Some recent improvements. In: Kodratoff, Y. (ed.) EWSL 1991. LNCS, vol. 482, pp. 151–163. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  7. 7.
    Dehaspe, L., Toivonen, H.: Discovery of frequent datalog patterns. Data Mining and Knowledge Discovery 3(1), 7–36 (1999)CrossRefGoogle Scholar
  8. 8.
    Dehaspe, L., Toivonen, H.: Discovery of Relational Association Rules. In: [12], pp. 189–212 (2001)Google Scholar
  9. 9.
    De Raedt, L.: Logical settings for concept learning. Artificial Intelligence 95, 187–201 (1997)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    De Raedt, L., Džeroski, S.: First order jk-clausal theories are PAC-learnable. Artificial Intelligence 70, 375–392 (1994)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    De Raedt, L., Kersting, K.: Probabilistic Logic Learning. SIGKDD Explorations 5(1), 31–48 (2003)CrossRefGoogle Scholar
  12. 12.
    Džeroski, S., Lavrač, N. (eds.): Relational Data Mining. Springer, Berlin (2001)MATHGoogle Scholar
  13. 13.
    Džeroski, S., Blockeel, H., Kompare, B., Kramer, S., Pfahringer, B., Van Laer, W.: Experiments in Predicting Biodegradability. In: Džeroski, S., Flach, P.A. (eds.) ILP 1999. LNCS, vol. 1634, pp. 80–91. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Džeroski, S.: Relational Data Mining Applications: An Overview. In: [12], pp. 339–364 (2001)Google Scholar
  15. 15.
    Džeroski, S., De Raedt, L. (eds): Special Issue on Multi-Relational Data Mining. SIGKDD Explorations 5(1) (2003)Google Scholar
  16. 16.
    Emde, W., Wettschereck, D.: Relational instance-based learning. In: Proceedings of the Thirteenth International Conference on Machine Learning, pp. 122–130. Morgan Kaufmann, San Mateo (1996)Google Scholar
  17. 17.
    Gaertner, T.: Kernel-based Learning in Multi-Relational Data Mining. SIGKDD Explorations 5(1), 49–58 (2003)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Horváth, T., Wrobel, S., Bohnebeck, U.: Relational instance-based learning with lists and terms. Machine Learning 43(1-2), 53–80 (2001)MATHCrossRefGoogle Scholar
  19. 19.
    Karalič, A., Bratko, I.: First order regression. Machine Learning 26, 147–176 (1997)MATHCrossRefGoogle Scholar
  20. 20.
    Kirsten, M., Wrobel, S., Horváth, T.: Distance Based Approaches to Relational Learning and Clustering. In: [12], pp. 213–232 (2001)Google Scholar
  21. 21.
    Kramer, S.: Structural regression trees. In: Proceedings of the Thirteenth National Conference on Artificial Intelligence, pp. 812–819. MIT Press, Cambridge (1996)Google Scholar
  22. 22.
    Lavrač, N., Džeroski, S., Grobelnik, M.: Learning nonrecursive definitions of relations with LINUS. In: Kodratoff, Y. (ed.) EWSL 1991. LNCS, vol. 482, pp. 265–281. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  23. 23.
    Lavrač, N., Džeroski, S.: Inductive Logic Programming: Techniques and Applications. Ellis Horwood, Chichester (1994), Freely available at:
  24. 24.
    Muggleton, S.: Inductive logic programming. New Generation Computing 8(4), 295–318 (1991)MATHCrossRefGoogle Scholar
  25. 25.
    Muggleton, S.: Inverse entailment and Progol. New Generation Computing 13, 245–286 (1995)CrossRefGoogle Scholar
  26. 26.
    Muggleton, S., Buntine, W.: Machine invention of first-order predicates by inverting resolution. In: Proceedings of the Fifth International Conference on Machine Learning, pp. 339–352. Morgan Kaufmann, San Mateo (1988)Google Scholar
  27. 27.
    Muggleton, S., Feng, C.: Efficient induction of logic programs. In: Proceedings of the First Conference on Algorithmic Learning Theory, Ohmsha, Tokyo, pp. 368–381 (1990)Google Scholar
  28. 28.
    Nedellec, C., Rouveirol, C., Ade, H., Bergadano, F., Tausend, B.: Declarative bias in inductive logic programming. In: De Raedt, L. (ed.) Advances in Inductive Logic Programming, pp. 82–103. IOS Press, Amsterdam (1996)Google Scholar
  29. 29.
    Quinlan, R.: Relational Learning and Boosting. In: [12], pp. 292–306 (2001)Google Scholar
  30. 30.
    Quinlan, J.R.: Learning logical definitions from relations. Machine Learning 5(3), 239–266 (1990)Google Scholar
  31. 31.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo (1993)Google Scholar
  32. 32.
    Shapiro, E.: Algorithmic Program Debugging. MIT Press, Cambridge (1983)Google Scholar
  33. 33.
    Srinivasan, A.: The Aleph Manual. Technical Report, Computing Laboratory, Oxford University (2000), Available at:
  34. 34.
    Van Laer, V., De Raedt, L.: How to Upgrade Propositional Learners to First Order Logic: A Case Study. In: [12], pp. 235–261 (2001)Google Scholar
  35. 35.
    Vens, C., Van Assche, A., Blockeel, H., Džeroski, S.: First order random forests with complex aggregates. In: Camacho, R., King, R., Srinivasan, A. (eds.) ILP 2004. LNCS, vol. 3194, pp. 323–340. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  36. 36.
    Wrobel, S., Džeroski, S.: The ILP description learning problem: towards a general model-level definition of data mining in ILP. In: Proceedings Fachgruppentreffen Maschinelles Lernen, University of Dortmund, Germany (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sašo Džeroski
    • 1
  1. 1.Department of Knowledge TechnologiesJozef Stefan InstituteLjubljanaSlovenija

Personalised recommendations