A Wirelessly-Powered Platform for Sensing and Computation

  • Joshua R. Smith
  • Alanson P. Sample
  • Pauline S. Powledge
  • Sumit Roy
  • Alexander Mamishev
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4206)


We present WISP, a wireless, battery-free platform for sensing and computation that is powered and read by a standards compliant Ultra-High Frequency (UHF) RFID reader. To the reader, the WISP appears to be an ordinary RFID tag. The WISP platform includes a general-purpose programmable flash microcontroller and implements the bi-directional communication primitives required by the Electronic Product Code (EPC) RFID standard, which allows it to communicate arbitrary sensor data via an EPC RFID reader by dynamically changing the ID it presents to the reader. For each 64 bit “packet,” the WISP’s microcontroller dynamically computes the 16-bit CRC that the EPC standard requires of valid packets. Because the WISP device can control all bits of the presented ID, 64 bits of sensor data can be communicated with a single RFID read event. As an example of the system in operation, we present 13 hours of continuous-valued light-level data measured by the device. All the measurements were made using power harvested from the RFID reader. No battery, and no wired connections (for either power or data) were used. As far as we are aware, this paper reports the first fully programmable computing platform that can operate using power transmitted from a long-range (UHF) RFID reader and communicate arbitrary, multi-bit data in response to a single RFID reader poll event.


Wireless Sensor Network Ubiquitous Computing Packet Error Rate Near Field Communication Electronic Product Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Intille, S.S., Larson, K., Tapia, E.M., Beaudin, J.S., Kaushik, P., Nawyn, J., Rockinson, R.: Using a live-in laboratory for ubiquitous computing research. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.) PERVASIVE 2006. LNCS, vol. 3968, pp. 349–365. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Culler, D.E., Mulder, H.: Smart Sensors to Network the World. Scientific American, 85–91 (June 2004)Google Scholar
  3. 3.
    Roundy, S., et al.: Energy Scavenging for Wireless Sensor Networks. Kluwer Academic Publishers, Dordrecht (2003)Google Scholar
  4. 4.
    Paradiso, J., Feldmeier, M.: A Compact, Wireless, Self-Powered Pushbutton Controller. In: Abowd, G.D., Brumitt, B., Shafer, S. (eds.) UbiComp 2001. LNCS, vol. 2201, pp. 299–304. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Webpages on the cavity resonator microphone can be found at: http://www.nsa.gov/museum/museu00029.cfm and http://www.spybusters.com/Great_Seal_Bug.html
  6. 6.
    Fletcher, R.: Low-Cost Electromagnetic Tagging: Design and Implementation, PhD dissertation. MIT (2001)Google Scholar
  7. 7.
    Paradiso, J., Hsiao, K., Benbasat, A.: Tangible Music Interfaces Using Passive Magnetic Tags. In: Proc. ACM Conf. Human Factors in Computing Systems: Special Workshop on New Interfaces for Musical Expression (CHI 2001). ACM Press, New York (2001)Google Scholar
  8. 8.
    Finkenzeller, K.: RFID Handbook, 2nd edn. John Wiley & Sons, Chichester (2003)CrossRefGoogle Scholar
  9. 9.
  10. 10.
    Want, R.: Enabling Ubiquitous Sensing with RFID. Computer 37(4), 84–86 (2004)CrossRefGoogle Scholar
  11. 11.
    Opasjumruskit, K., Thanthipwan, T., Sathusen, O., Sirinamarattana, P., Gadmanee, P., Pootarapan, E., Wongkomet, N., Thanachayanont, A., Thamsirianunt, M.: Self-Powered Wireless Temperature Sensors Exploit RFID Technology. IEEE Pervasive Computing Magazine 5(1), 54–61 (2006)CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Smith, J.R., Fishkin, K.P., Jiang, B., Mamishev, A., Philipose, M., Rea, A.D., Roy, S., Sundara-Rajan, K.: RFID-based Techniques for Human-Activity Detection. Communications of the ACM 48(9), 39–44 (2005)CrossRefGoogle Scholar
  14. 14.
  15. 15.
    Philipose, M., Fishkin, K.P., Perkowitz, M., Patterson, D.J., Fox, D., Kautz, H., Hähnel, D.: Inferring Activities from Interactions with Objects. IEEE Pervasive Computing 3(4), 50–57 (2004)CrossRefGoogle Scholar
  16. 16.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Joshua R. Smith
    • 1
  • Alanson P. Sample
    • 2
  • Pauline S. Powledge
    • 1
  • Sumit Roy
    • 2
  • Alexander Mamishev
    • 2
  1. 1.Intel Research SeattleSeattleUSA
  2. 2.Department of Electrical EngineeringUniversity of WashingtonSeattleUSA

Personalised recommendations