Advertisement

Mobility Detection Using Everyday GSM Traces

  • Timothy Sohn
  • Alex Varshavsky
  • Anthony LaMarca
  • Mike Y. Chen
  • Tanzeem Choudhury
  • Ian Smith
  • Sunny Consolvo
  • Jeffrey Hightower
  • William G. Griswold
  • Eyal de Lara
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4206)

Abstract

Recognition of everyday physical activities is difficult due to the challenges of building informative, yet unobtrusive sensors. The most widely deployed and used mobile computing device today is the mobile phone, which presents an obvious candidate for recognizing activities. This paper explores how coarse-grained GSM data from mobile phones can be used to recognize high-level properties of user mobility, and daily step count. We demonstrate that even without knowledge of observed cell tower locations, we can recognize mobility modes that are useful for several application domains. Our mobility detection system was evaluated with GSM traces from the everyday lives of three data collectors over a period of one month, yielding an overall average accuracy of 85%, and a daily step count number that reasonably approximates the numbers determined by several commercial pedometers.

Keywords

Mobile Phone Signal Strength Data Collector Activity Recognition Step Count 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    GSM Association Press Release, Worldwide cellular connections exceeds 2 billion (2005), http://www.gsmworld.com/news/press_/press05_21.shtml
  2. 2.
    Wireless Week, Newer Phones, Older Users, http://www.wirelessweek.com/article/CA503601.html
  3. 3.
    Abowd, G.A., Bobick, I., Essa, E.: Mynatt, and W. Rogers. The Aware Home: Developing Technologies for Successful Aging. In: Proceedings of AAAI Workshop and Automation as a Care GiverGoogle Scholar
  4. 4.
    Anderson, I., Muller, H.: Context Awareness via GSM Signal Strength Fluctuation. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.) PERVASIVE 2006. LNCS, vol. 3968, pp. 27–31. Springer, Heidelberg (2006)Google Scholar
  5. 5.
    Bahl, P., Padmanabhan, V.: RADAR: An-In-Building RF-Based User Location and Tracking. In: Proceedings of IEEE Infocom 2000, pp. 775–784 (2000)Google Scholar
  6. 6.
    Bao, L., Intille, S.S.: Activity Recognition from User-Annotated Acceleration Data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Consolvo, S., Roessler, P., Shelton, B.E., LaMarca, A., Schilit, B., Bly, S.: Technology for Care Networks of Elders. IEEE Pervasive Computing Mobile & Ubiquitous Systems: Successful Aging 3(2), 22–29 (2004)Google Scholar
  8. 8.
    Consolvo, S., Roessler, P., Shelton, B.E.: The careNet display: Lessons learned from an in home evaluation of an ambient display. In: Davies, N., Mynatt, E.D., Siio, I. (eds.) UbiComp 2004. LNCS, vol. 3205, pp. 1–17. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Consumer Reports, Pedometers: Walking by the numbers, Consumer Reports 69(10), 2–30 (2004)Google Scholar
  10. 10.
  11. 11.
    Eagle, N., Pentland, A.: Reality Mining: Sensing Complex Social Systems. Personal and Ubiquitous Computing (January 2006)Google Scholar
  12. 12.
    Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proceedings of International Conference on Machine Learning, pp. 148–156 (1996)Google Scholar
  13. 13.
    Friedman, J.H., Hastie, T., Tibshirani, R.: Additive logistic regression: A statistical view of boosting. Annals of Statistics, 337–374 (2000)Google Scholar
  14. 14.
    Hariharan, R., Krumm, J., Horvitz, E.: Web-enhanced GPS. In: Strang, T., Linnhoff-Popien, C. (eds.) LoCA 2005. LNCS, vol. 3479, pp. 95–104. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Intille, S.S., Larson, K., Beaudin, J.S., Nawyn, J., Tapia, E.M., Kaushik, P.: A living laboratory for the design and evaluation of ubiquitous computing technologies. In: CHI 2005 Extended Abstracts, pp. 1941–1944 (2005)Google Scholar
  16. 16.
    Ito, Mizuko, et al. (eds.): Personal, Portable, Pedestrian. Mobile Phones in Japanese Life. The MIT Press, Cambridge (2005)Google Scholar
  17. 17.
    Krumm, J., Horvitz, E.: LOCADIO: Inferring Motion and Location from Wi-Fi Signal Strengths. In: Mobiquitous 2004, pp. 4–13 (2004)Google Scholar
  18. 18.
    LaMarca, A., Chawathe, Y., Consolvo, S., Hightower, J., Smith, I., Scott, J., Sohn, T., Howard, J., Hughes, J., Potter, F., Tabert, J., Powledge, P.S., Borriello, G., Schilit, B.N.: Place lab: Device positioning using radio beacons in the wild. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 116–133. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Lester, J., Choudhury, T., Kern, N., Borriello, G., Hannaford, B.: A Hybrid Discriminative-Generative Approach for Modeling Human Activities. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI 2005) (2005)Google Scholar
  20. 20.
    Liao, L., Fox, D., Kautz, H.: Location-Based Activity Recognition using Relational Markov Networks. In: Proceedings of the International Conference on Artificial Intelligence (IJCAI 2005) (2005)Google Scholar
  21. 21.
    Mynatt, E.D., Rowan, J., Craighill, S.: Jacobs. Digital family portraits: supporting peace of mind for extended family members. In: Proceedings of the CHI 2001, pp. 333–340 (2001)Google Scholar
  22. 22.
    Otsason, V., Varshavsky, A., LaMarca, A., de Lara, E.: Accurate GSM indoor localization. In: Beigl, M., Intille, S.S., Rekimoto, J., Tokuda, H. (eds.) UbiComp 2005. LNCS, vol. 3660, pp. 141–158. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Patterson, D.J., Liao, L., Fox, D., Kautz, H.: Inferring high-level behavior from low-level sensors. In: Dey, A.K., Schmidt, A., McCarthy, J.F. (eds.) UbiComp 2003. LNCS, vol. 2864, pp. 73–89. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  24. 24.
    Pavlovic, V., Garg, A., Rehg, J.M.: Multimodal speaker detection using error feedback dynamic bayesian networks. In: IEEE Conference on Computer Vision and Pattern Recognition (2000)Google Scholar
  25. 25.
    Philipose, M., Fishkin, K., Perkowitz, M., Patterson, D.J., Fox, D., Kautz, H., Hähnel, D.: Inferring Activities from Interactions with Objects. In: IEEE Pervasive Computing (October 2004)Google Scholar
  26. 26.
    Schapire, R.E.: The boosting approach to machine learning: An overview. In: Denison, D.D., Hansen, M.H., Holmes, C., Mallick, B., Yu, B. (eds.) Nonlinear Estimation and Classification. Springer, Heidelberg (2003)Google Scholar
  27. 27.
    Schwenk, H., Bengio, Y.: Training methods for adaptive boosting of neural networks for character recognition. In: Proceedings of NIPS 1998 (1998)Google Scholar
  28. 28.
    Smith, I.: Social-Mobile Applications. IEEE Computer 38(4), 84–85 (2005)Google Scholar
  29. 29.
    Smith, I., Consolvo, S., LaMarca, A., Hightower, J., Scott, J., Sohn, T., Hughes, J., Iachello, G., Abowd, G.D.: Social disclosure of place: From location technology to communication practices. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 134–151. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  30. 30.
  31. 31.
  32. 32.
    Tudor-Locke, C., Bassett Jr., D.R.: How many steps/day are enough? Preliminary pedometer indices for public health. Sports Med. 34(1), 1–8 (2004)CrossRefGoogle Scholar
  33. 33.
    Viola, P.A., Jones, M.J.: Robust real-time face detection. International Journal of Computer Vision 57(2), 137–154 (2004)CrossRefGoogle Scholar
  34. 34.
    Ward, A., Jones, A., Hopper, A.: A new location technique for the active office. In: Personal Communications (October 1997)Google Scholar
  35. 35.
    Webb, G.I.: MultiBoosting: A Technique for Combining Boosting and Wagging. Machine Learning 40(2), 159–196 (2000)CrossRefGoogle Scholar
  36. 36.
    Weisstein, E.W.: Spearman Rank Correlation Coefficient, http://mathworld.wolfram.com/SpearmanRankCorrelationCoefficient.html
  37. 37.
    Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Timothy Sohn
    • 1
  • Alex Varshavsky
    • 2
  • Anthony LaMarca
    • 3
  • Mike Y. Chen
    • 3
  • Tanzeem Choudhury
    • 3
  • Ian Smith
    • 3
  • Sunny Consolvo
    • 3
  • Jeffrey Hightower
    • 3
  • William G. Griswold
    • 1
  • Eyal de Lara
    • 2
  1. 1.Computer Science and EngineeringUniversity of CaliforniaSan Diego, La JollaUSA
  2. 2.Computer ScienceUniversity of TorontoTorontoCanada
  3. 3.Intel ResearchSeattleUSA

Personalised recommendations