Semantic Web Reasoning Using a Blackboard System

  • Craig McKenzie
  • Alun Preece
  • Peter Gray
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4187)


In this paper, we discuss the need for a hybrid reasoning approach to handing Semantic Web (SW) data and explain why we believe that the Blackboard Architecture is particularly suitable. We describe how we have utilised it for coordinating a combination of ontological inference, rules and constraint based reasoning within a SW context.

After describing the metaphor on which the Blackboard Architecture is based we introduce its key components: the blackboard Panels containing the solution space facts and problem related goals and sub-goals; the differing behaviours of the associated Knowledge Sources and how they interact with the blackboard; and, finally, the Controller and how it manages and focuses the problem solving effort.

To help clarify, we use our test-bed system, the AKTive Workgroup Builder and Blackboard (AWB+B) to explain some of the issues and problems encountered when implementing a SW Blackboard System in a problem oriented context.


Constraint Satisfaction Problem Knowledge Source Abstraction Level Closed World Open World Assumption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anastasia Analyti, C.V.D., Antoniou, G., Wagner, G.: Negation and Negative Information in the W3C Resource Description Framework. Annals of Mathematics, Computing & Teleinfomatics 1(2), 25–34 (2004)Google Scholar
  2. 2.
    Brachman, R., Gilbert, V., Levesque, H.: An Essential Hybrid Reasoning System: Knowledge and Symbol Level Accounts of KRYPTON. In: The Ninth International Joint Conference on Artificial Intelligence (IJCAI 1985), Los Angeles, California, USA, pp. 532–539 (1985)Google Scholar
  3. 3.
    Carver, N., Lesser, V.: The Evolution of Blackboard Control Architectures. CMPSCI Technical Report 92-71, Computer Science Department, Southern Illinois University (1992)Google Scholar
  4. 4.
    Doherty, P., Lukaszewicz, W., Szalas, A.: Efficient Reasoning using the Local Closed-World Assumption. In: 9th International Conference on Artificial Intelligence: Mehtodology, Systems, Applications (2000)Google Scholar
  5. 5.
    Engelmore, R.S., Terry, A.: Structure and Function of the CRYSALIS System. In: The Sixth International Joint Conference on Artificial Intelligence (IJCAI 1979), Tokyo, Japan, August 20-23, pp. 250–256 (1979)Google Scholar
  6. 6.
    Erman, L.D., Hayes-Roth, F., Lesser, V.R., Reddy, D.R.: The Hearsay-II Speech-Understanding System: Integrating Knowledge to Resolve Uncertainty. ACM Computing Surveys 12(2), 213–253 (1980)CrossRefGoogle Scholar
  7. 7.
    Etzioni, O., Golden, K., Weld, D.: Sound and Efficient Closed-World Reasoning for Planning. Artificial Intelligence 89(1-2), 113–148 (1997)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Feigenbaum, E.A., Nii, H.P., Anton, J.J., Rockmore, A.J.: Signal-to-signal Transformation: HASP/SIAP Case Study. AI Magazine 3(2), 23–35 (1982)Google Scholar
  9. 9.
    Harris, S., Gibbins, N.: 3store: Efficient Bulk RDF Storage. In: 1st International Workshop on Practical and Scalable Semantic Systems (PSSS 2003), pp. 1–20 (2003)Google Scholar
  10. 10.
    Hayes-Roth, B.: A Blackboard Architecture for Control. Artificial Intelligence 26(3), 251–321 (1985)CrossRefGoogle Scholar
  11. 11.
    Hayes-Roth, B., Hayes-Roth, F., Rosenschien, F., Cammarata, S.: Modelling Planning as an Incremental, Opportunistic Process. In: The Sixth International Joint Conference on Artificial Intelligence (IJCAI 1979), Tokyo, Japan, August 20-23, 1979, pp. 375–383 (1979)Google Scholar
  12. 12.
    Hendler, J.: Agents and the Semantic Web. IEEE Intelligent Systems 16(2), 30–37 (2001)CrossRefGoogle Scholar
  13. 13.
    McKenzie, C., Preece, A., Gray, P.: Extending SWRL to Express Fully-Quantified Constraints. In: Antoniou, G., Boley, H. (eds.) RuleML 2004. LNCS, vol. 3323, pp. 139–154. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Mei, J., Liu, S., Yue, A., Lin, Z.: An Extension to OWL with General Rules. In: Antoniou, G., Boley, H. (eds.) RuleML 2004. LNCS, vol. 3323, pp. 155–169. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Nii, H.P.: Blackboard Systems: The Blackboard Model of Problem Solving and the Evolution of Blackboard Architectures. AI Magazine 7(2), 38–53 (1986)Google Scholar
  16. 16.
    Shadbolt, N., Gibbins, N., Glaser, H., Harris, S., Schraefel, M.: CS AKTive Space, or How We Learned to Stop Worrying and Love the Semantic Web. IEEE Intelligent Systems 19(3), 41–47 (2004)CrossRefGoogle Scholar
  17. 17.
    Tsarkov, D., Horrocks, I.: DL Reasoner vs. First-Order Prover. In: 2003 Description Logic Workshop (DL 2003). CEUR, vol. 81, pp. 152–159 (2003),

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Craig McKenzie
    • 1
  • Alun Preece
    • 1
  • Peter Gray
    • 1
  1. 1.Department of Computing ScienceUniversity of AberdeenAberdeenUK

Personalised recommendations