Phylogenetic Network Inferences Through Efficient Haplotyping

  • Yinglei Song
  • Chunmei Liu
  • Russell L. Malmberg
  • Liming Cai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4175)


The genotype phasing problem is to determine the haplotypes of diploid individuals from their genotypes where linkage relationships are not known. Based on the model of perfect phylogeny, the genotype phasing problem can be solved in linear time. However, recombinations may occur and the perfect phylogeny model thus cannot interpret genotype data with recombinations. This paper develops a graph theoretical approach that can reduce the problem to finding a subgraph pattern contained in a given graph. Based on ordered graph tree decomposition, this problem can be solved efficiently with a parameterized algorithm. Our tests on biological genotype data showed that this algorithm is extremely efficient and its interpretation accuracy is better than or comparable with that of other approaches.


Directed Acyclic Graph Tree Node Tree Decomposition Phylogenetic Network Incoming Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial k-trees. Discrete Applied Mathematics 23, 11–24 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Cilibrasi, R., Iersel, L., Kelk, S., Tromp, J.: On the complexity of several haplotyping problems. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS (LNBI), vol. 3692, pp. 128–139. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Crawford, D.C., Carlson, C.S., Rieder, M.J., Carrington, D.P., Yi, Q., Smith, J.D., Eberle, M.A., Kruglyak, L., Nickerson, D.A.: Haplotype diversity across 100 candidate genes for inflammation, lipid metabolism, and blood pressure regulation in two populations. American J. of Human Genetics 74, 610–622 (2004)CrossRefGoogle Scholar
  4. 4.
    Clark, A.G.: Inference of haplotypes from PCR-amplified samples of diploid populations. Molecular Biology and Evolution 7(2), 111–122 (1990)Google Scholar
  5. 5.
    Ding, Z., Filkov, V., Gusfield, D.: A Linear-Time Algorithm for the Perfect Phylogeny Haplotyping (PPH) Problem. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2006. LNCS (LNBI), vol. 3909, pp. 231–245. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Eskin, E., Halperin, E., Karp, R.M.: Large scale reconstruction of haplotypes from genotype data. In: Proc. 7th Int’l Conf. on Research in Comput. Molecular Biol. RECOMB 2003, pp. 104–113 (2003)Google Scholar
  7. 7.
    Greenspan, G., Greiger, D.: Model-based inference of haplotype block variation. J. of Computational Biology 11, 493–504 (2004)CrossRefGoogle Scholar
  8. 8.
    Gusfield, D.: Haplotyping as perfect phylogeny: conceptual framework and efficient solutions. In: Proc. 6th Int’l Conf. on Research in Comput. Molecular Biol. RECOMB 2002, pp. 166–175 (2002)Google Scholar
  9. 9.
    Gusfield, D., Bansal, V.: A fundamental decomposition theory for phylogenetic networks and incompatible characters. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 217–232. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Gusfield, D.: Haplotyping by pure pasimony. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 144–155. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Gusfield, D.: A practical algorithm for optimal inference of haplotypes from diploid populations. In: Proc. 8th Conf. on Intelligent Systems for Molecular Biology ISMB 2000, pp. 183–189 (2000)Google Scholar
  12. 12.
    Gusfield, D., Eddhu, S., Langley, C.: Optimal efficient reconstruction of phylogenetic networks with constrained recombination. J. of Bioinformatics and Computational Biology 2(1), 173–213 (2004)CrossRefGoogle Scholar
  13. 13.
    Gusfield, D.: An overview of combinatorial methods for haplotype inference. In: Istrail, S., Waterman, M.S., Clark, A. (eds.) DIMACS/RECOMB Satellite Workshop 2002. LNCS (LNBI), vol. 2983, pp. 9–25. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Gusfield, D.: Inference of haplotypes from samples of diploid populations: complexity and algorithms. J. of Computational Biology 8(3), 305–324 (2001)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Halperin, E., Karp, R.M.: Perfect phylogeny and haplotype assignment. In: Proc. 8th Int’l Conf. on Research in Comput. Molecular Biol. RECOMB 2004, pp. 10–19 (2004)Google Scholar
  16. 16.
    Hein, J.: Reconstructing evolution of squences subject to recombination using parsimony. Mathematical Biosciences 98, 185–200 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Kimmel, G., Shamir, R.: Maximum likelihood resolution of multi-block genotypes. In: Proc. 8th Int’l Conf. on Research in Comput. Molecular Biol. RECOMB 2004, pp. 2–9 (2004)Google Scholar
  18. 18.
    Kimmel, G., Shamir, R.: The incomplete perfect phylogeny haplotype problem. J. of Bioinformatics and Computational Biology 3(2), 359–384 (2005)CrossRefGoogle Scholar
  19. 19.
    Moret, B.M.E., Nakhleh, L., Warnow, T., Linder, C.R., Tholse, A., Padolina, A., Sun, J., Timme, R.: Phylogenetic networks: Modeling, reconstructibility, and accuracy. IEEE/ACM Transactions on Computational Biology and Bioinformatics 1, 13–23 (2004)CrossRefGoogle Scholar
  20. 20.
    Myers, S.R., Griffiths, R.C.: Bounds on the minimum number of recombination events in a sample history. Genetics 163, 375–394 (2003)Google Scholar
  21. 21.
    Niu, T., Qin, Z.S., Xu, X., Liu, J.S.: Bayesian haplotype inference for multiple linked single-nucleotide polymorphisms. American J. of Human Genetics 70(1), 157–169 (2002)CrossRefGoogle Scholar
  22. 22.
    Posada, D., Crandall, K.: Intraspecific gene genealogies: trees grafting into networks. Trends in Ecology and Evolution 16, 37–45 (2001)CrossRefGoogle Scholar
  23. 23.
    Rastas, P., Koivisto, M., Mannila, H., Ukkonen, E.: A hidden Markov technique for haplotype reconstruction. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS (LNBI), vol. 3692, pp. 140–151. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Robertson, N., Seymour, P.D.: Graph Minors II. Algorithmic aspects of tree-width. J. of Algorithms 7, 309–322 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Sharan, R., Halldórsson, B.V., Istrail, S.: Islands of tractability for parsimony haplotyping. In: Proc. IEEE Computational Systems Bioinformatics Conf. CSB 2005, pp. 65–72 (2005)Google Scholar
  26. 26.
    Song, Y.S., Hein, J.: On the minimum number of recombination events in the evolutionary history of DNA sequences. J. of Mathematical Biology 48, 160–186 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Song, Y.S., Wu, Y., Gusfield, D.: Algorithms for imperfect phylogeny haplotyping (IPPH) with a single homoplasy or recombination event. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS (LNBI), vol. 3692, pp. 152–164. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  28. 28.
    Stephens, M., Smith, N.J., Donnelly, P.: A new statistical method for haplotype reconstruction from population data. American J. of Human Genetics 68, 978–989 (2001)CrossRefGoogle Scholar
  29. 29.
    Wang, L., Zhang, K., Zhang, L.: Perfect phylogenetic networks with recombination. J. of Computational Biology 8(1), 69–78 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yinglei Song
    • 1
  • Chunmei Liu
    • 1
  • Russell L. Malmberg
    • 2
  • Liming Cai
    • 1
  1. 1.Dept. of Computer ScienceUniv. of GeorgiaAthensUSA
  2. 2.Department of Plant BiologyUniversity of GeorgiaAthensUSA

Personalised recommendations