Flux-Based vs. Topology-Based Similarity of Metabolic Genes

  • Oleg Rokhlenko
  • Tomer Shlomi
  • Roded Sharan
  • Eytan Ruppin
  • Ron Y. Pinter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4175)


We present an effectively computable measure of functional gene similarity that is based on metabolic gene activity across a variety of growth media. We applied this measure to 750 genes comprising the metabolic network of the budding yeast. Comparing the in silico computed functional similarities to those obtained by using experimental expression data, we show that our computational method captures similarities beyond those that are obtained by the topological analysis of metabolic networks, thus revealing—at least in part—dynamic characteristics of gene function. We also suggest that network centrality partially explains functional centrality (i.e. the number of functionally highly similar genes) by reporting a significant correlation between the two. Finally, we find that functional similarities between topologically distant genes occur between genes with different GO annotations.


Metabolic Network Mixed Integer Linear Programming Metabolic Gene Flux Balance Analysis Network Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jeong, H., Tombor, B., Albert, R., Oltavi, Z., Barabasi, A.: The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)CrossRefGoogle Scholar
  2. 2.
    Ravasz, E., Somera, A., Mongru, D., Oltvai, Z., Barabasi, A.: Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555 (2002)CrossRefGoogle Scholar
  3. 3.
    Kharchenko, P., Church, G.M., Vitkup, D.: Expression dynamics of a cellular metabolic network. Molecular Systems Biology 1, E1–E6 (2005)CrossRefGoogle Scholar
  4. 4.
    Chen, L., Vitkup, D.: Predicting genes for orphan metabolic activities using phylogenetic profiles. Genome Biol. 7, R17 (2006)CrossRefGoogle Scholar
  5. 5.
    Famili, I., Forster, J., Nielsen, J., Palsson, B.Ø.: Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proc. Natl. Acad. Sci. U S A 100, 13134–13139 (2003)CrossRefGoogle Scholar
  6. 6.
    Zaslaver, A., Mayo, A., Rosenberg, R., Bashkin, P., Sberro, H., et al.: Just-in-time transcription program in metabolic pathways. Nat. Genet. 36, 486–491 (2004)CrossRefGoogle Scholar
  7. 7.
    Schuster, S., Dandekar, T., Fell, D.: Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol. 17, 53–60 (1999)CrossRefGoogle Scholar
  8. 8.
    Schuster, S., Klamt, S., Weckwerth, W., Moldenhauer, F., Pfeiffer, T.: Use of network analysis of metabolic systems in bioengineering. Bioprocess and Biosystems Engineering 24, 363–372 (2002)CrossRefGoogle Scholar
  9. 9.
    Reed, J., Palsson, B.: Genome-scale in silico models of e. coli have multiple equivalent phenotypic states: assessment of correlated reaction subsets that comprise network states. Genome Res. 14, 1797–1805 (2004)CrossRefGoogle Scholar
  10. 10.
    Bilu, Y., Shlomi, T., Barkai, N., Ruppin, E.: Conservation of expression and sequence of metabolic genes is reflected by activity across metabolic states. PLoS Comp. Bio. (in press, 2006)Google Scholar
  11. 11.
    Fell, D., Small, J.: Fat synthesis in adipose tissue. An examination of stoichiometric constraints. Biochem. J. 238, 781–786 (1986)Google Scholar
  12. 12.
    Kauffman, K., Prakash, P., Edwards, J.: Advances in flux balance analysis.. Curr. Opin. Biotechnol. 14, 491–496 (2003)CrossRefGoogle Scholar
  13. 13.
    Price, N.D., Reed, J.L., Palsson, B.Ø.: Genome-scale Models of Microbial Cells: Evaluating the consequences of constraints. Nature Reviews Microbiology 2, 886–897 (2004)CrossRefGoogle Scholar
  14. 14.
    Varma, A., Palsson, B.: Metabolic capabilities of Escherichia coli: II. Optimal growth patterns. J. Theor. Biol. 165, 503–522 (1993)CrossRefGoogle Scholar
  15. 15.
    Schilling, C.H., Edwards, J.S., Palsson, B.: Toward metabolic phenomics: analysis of genomic data using flux balances. Biotechnol. Prog. 15, 288–295 (1999)CrossRefGoogle Scholar
  16. 16.
    Fell, D.: Understanding the Control of Metabolism. Portland Press, London (1996)Google Scholar
  17. 17.
    Schilling, C.H., Edwards, J.S., Letscher, D., Palsson, B.Ø.: Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems. Biotechnol. Bioeng. 71, 286–306 (2000)CrossRefGoogle Scholar
  18. 18.
    Vanderbei, R.J.: Linear Programming: Foundations and Extensions. Kluwer Academic Publishers, Boston (1996)MATHGoogle Scholar
  19. 19.
    Edwards, J., Ibarra, R., Palsson, B.: In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat. Biotechnol. 19, 125–130 (2001)CrossRefGoogle Scholar
  20. 20.
    Badarinarayana, V., Estep, P.W., Shendure, J., Edwards, J., Tavazoie, S., Lam, F., Church, G.M.: Selection analyses of insertional mutants using subgenic-resolution arrays. Nat. Biotechnol. 19, 1060–1065 (2001)CrossRefGoogle Scholar
  21. 21.
    Duarte, N., Herrgard, M., Palsson, B.Ø.: Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res. 14, 1298–1309 (2004)CrossRefGoogle Scholar
  22. 22.
    Segre, D., Vitkup, D., Church, G.: Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. U S A 99, 15112–15117 (2002)CrossRefGoogle Scholar
  23. 23.
    Shlomi, T., Berkman, O., Ruppin, E.: Regulatory on/off minimization of metabolic flux changes after genetic perturbations. Proc. Natl. Acad. Sci. U S A 102, 7695–7700 (2005)CrossRefGoogle Scholar
  24. 24.
    Kuepfer, L., Sauer, U., Blank, L.M.: Metabolic functions of duplicate genes in Saccharomyces cerevisiae. Genome Res. 15, 1421–1430 (2005)CrossRefGoogle Scholar
  25. 25.
    Mahadevan, R., Schilling, C.: The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab. Eng. 5, 264–276 (2003)CrossRefGoogle Scholar
  26. 26.
    Almaas, E., Oltvai, Z., Barabasi, A.: The activity reaction core and plasticity of metabolic networks. PLoS Comput. Biol. 1, 68 (2005)CrossRefGoogle Scholar
  27. 27.
    Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill, New-York (1983)MATHGoogle Scholar
  28. 28.
    Hughes, T., et al.: Flux analysis of underdetermined metabolic networks: the quest for the missing constraints. Cell 102, 109–126 (2000)CrossRefGoogle Scholar
  29. 29.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C++: the art of scientific computing. Cambridge University Press, Cambridge (2002)Google Scholar
  30. 30.
    Ashburner, M., et al.: Gene Ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000)CrossRefGoogle Scholar
  31. 31.
    Issel-Tarver, L., et al.: Saccharomyces Genome Database. Methods Enzymol 350, 329–346 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Oleg Rokhlenko
    • 1
  • Tomer Shlomi
    • 2
  • Roded Sharan
    • 2
  • Eytan Ruppin
    • 2
  • Ron Y. Pinter
    • 1
  1. 1.Dept. of Computer ScienceTechnion–IITHaifaIsrael
  2. 2.School of Computer ScienceTel-Aviv UniversityTel-AvivIsrael

Personalised recommendations