Decomposing Metabolomic Isotope Patterns

  • Sebastian Böcker
  • Matthias C. Letzel
  • Zsuzsanna Lipták
  • Anton Pervukhin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4175)


We present a method for determining the sum formula of metabolites solely from their mass and isotope pattern. Metabolites, such as sugars or lipids, participate in almost all cellular processes, but the majority still remains uncharacterized. Our input is a measured isotope pattern from a high resolution mass spectrometer, and we want to find those molecules that best match this pattern.

Determination of the sum formula is a crucial step in the identification of an unknown metabolite, as it reduces its possible structures to a hopefully manageable set. Our method is computationally efficient, and first results on experimental data indicate good identification rates for chemical compounds up to 700 Dalton.

Above 1000 Dalton, the number of molecules with a certain mass increases rapidly. To efficiently analyze mass spectra of such molecules, we define several additive invariants extracted from the input and then propose to solve a joint decomposition problem.


Peak Mass Isotopic Distribution Isotope Pattern High Resolution Mass Spectrometry Nominal Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Audi, G., Wapstra, A., Thibault, C.: The AME2003 atomic mass evaluation (ii): Tables, graphs, and references. Nucl. Phys. A 729, 129–336 (2003)CrossRefGoogle Scholar
  2. 2.
    Böcker, S., Lipták, Z.: Efficient mass decomposition. In: Proc. of ACM Symposium on Applied Computing (ACM SAC 2005), pp. 151–157 (2006)Google Scholar
  3. 3.
    Fürst, A., Clerc, J.-T., Pretsch, E.: A computer program for the computation of the molecular formula. Chemom. Intell. Lab. Syst. 5, 329–334 (1989)CrossRefGoogle Scholar
  4. 4.
    Grange, A.H., Zumwalt, M.C., Sovocool, G.W.: Determination of ion and neutral loss compositions and deconvolution of product ion mass spectra using an orthogonal acceleration time-of-flight mass spectrometer and an ion correlation program. Rapid Commun. Mass Spectrom. 20(2), 89–102 (2006)CrossRefGoogle Scholar
  5. 5.
    Hsu, C.S.: Diophantine approach to isotopic abundance calculations. Anal. Chem. 56(8), 1356–1361 (1984)CrossRefGoogle Scholar
  6. 6.
    Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K.F., Itoh, M., Kawashima, S., Katayama, T., Araki, M., Hirakawa, M.: From genomics to chemical genomics: new developments in KEGG. Nuc. Acid Res. 34, D354–D357 (2006)CrossRefGoogle Scholar
  7. 7.
    Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg (2004)MATHGoogle Scholar
  8. 8.
    Kubinyi, H.: Calculation of isotope distributions in mass spectrometry: A trivial solution for a non-trivial problem. Anal. Chim. Acta. 247, 107–119 (1991)CrossRefGoogle Scholar
  9. 9.
    McLafferty, F.W.: Wiley Registry of Mass Spectral Data, 7th edn. with NIST 2005 spectral data edition. John Wiley & Sons, Chichester (2005)Google Scholar
  10. 10.
    Ojanperä, S., Pelander, A., Pelzing, M., Krebs, I., Vuori, E., Ojanperä, I.: Isotopic pattern and accurate mass determination in urine drug screening by liquid chromatography/time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom 20(7), 1161–1167 (2006)CrossRefGoogle Scholar
  11. 11.
    Pellegrin, V.: Molecular formulas of organic compounds: the nitrogen rule and degree of unsaturation. J. Chem. Educ. 60(8), 626–633 (1983)CrossRefGoogle Scholar
  12. 12.
    Rockwood, A.L., Van Orman, J.R., Dearden, D.V.: Isotopic compositions and accurate masses of single isotopic peaks. J. Am. Soc. Mass Spectr. 15, 12–21 (2004)CrossRefGoogle Scholar
  13. 13.
    Wilf, H.: Generating Functionology. Academic Press, London (1990)MATHGoogle Scholar
  14. 14.
    Yergey, J.A.: A general approach to calculating isotopic distributions for mass spectrometry. Int. J. Mass Spectrom. Ion Phys. 52(2-3), 337–349 (1983)CrossRefGoogle Scholar
  15. 15.
    Zhang, N., Aebersold, R., Schwikowski, B.: ProbID: a probabilistic algorithm to identify peptides through sequence database searching using tandem mass spectral data. Proteomics 2(10), 1406–1412 (2002)CrossRefGoogle Scholar
  16. 16.
    Zhang, W., Chait, B.T.: ProFound: an expert system for protein identification using mass spectrometric peptide mapping information. Anal. Chem. 72(11), 2482–2489 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sebastian Böcker
    • 1
  • Matthias C. Letzel
    • 2
  • Zsuzsanna Lipták
    • 3
  • Anton Pervukhin
    • 3
  1. 1.Lehrstuhl für BioinformatikFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Organische Chemie I, Fakultät für ChemieUniversität BielefeldBielefeldGermany
  3. 3.AG Genominformatik, Technische FakultätUniversität BielefeldBielefeldGermany

Personalised recommendations