Measures of Codon Bias in Yeast, the tRNA Pairing Index and Possible DNA Repair Mechanisms

  • Markus T. Friberg
  • Pedro Gonnet
  • Yves Barral
  • Nicol N. Schraudolph
  • Gaston H. Gonnet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4175)


Protein translation is a rapid and accurate process, which has been optimized by evolution. Recently, it has been shown that tRNA reusage influences translation speed. We present the tRNA Pairing Index (TPI), a novel index to measure the degree of tRNA reusage in any gene. We describe two variants of the index, how to combine various such indices to a single one and an efficient algorithm for their computation. A statistical analysis of gene expression groups indicate that cell cycle genes have high TPI. This result is independent of other biases like GC content and codon bias. Furthermore, we find an additional unexpected codon bias that seems related to a context sensitive DNA repair.


Codon Usage Synonymous Codon Codon Bias Individual Amino Acid Cell Cycle Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Elf, J., Nilsson, D., Tenson, T., Ehrenberg, M.: Selective charging of tRNA isoacceptors explains patterns of codon usage. Science 300, 1718–1722 (2003)CrossRefGoogle Scholar
  2. 2.
    Dittmar, K.A., Sorensen, M.A., Elf, J., Ehrenberg, M., Pan, T.: Selective charging of tRNA isoacceptors induced by amino-acid starvation. EMBO Rep. 6, 151–157 (2005)CrossRefGoogle Scholar
  3. 3.
    Barral, Y., Faty, M., von Rohr, P., Schraudolph, N.N., Friberg, M.T., Roth, A.C., Gonnet, P., Cannarozzi, G.M., Gonnet, G.H.: tRNA recycling in translation and its influence on the dynamics of gene expression in yeast (in preparation, 2006)Google Scholar
  4. 4.
    Bennetzen, J.L., Hall, B.D.: Codon selection in yeast. J. Biol. Chem. 257, 3026–3031 (1982)Google Scholar
  5. 5.
    Sharp, P.M., Li, W.H.: The codon adaptation index–a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15, 1281–1295 (1987)CrossRefGoogle Scholar
  6. 6.
    Wright, F.: The ’effective number of codons’ used in a gene. Gene. 87, 23–29 (1990)CrossRefGoogle Scholar
  7. 7.
    Boycheva, S., Chkodrov, G., Ivanov, I.: Codon pairs in the genome of Escherichia coli. Bioinformatics 19, 987–998 (2003)CrossRefGoogle Scholar
  8. 8.
    Carbone, A., Zinovyev, A., Kepes, F.: Codon adaptation index as a measure of dominating codon bias. Bioinformatics 19, 2005–2015 (2003)CrossRefGoogle Scholar
  9. 9.
    Greenbaum, D., Colangelo, C., Williams, K., Gerstein, M.: Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol. 4, 117 (2003)CrossRefGoogle Scholar
  10. 10.
    Friberg, M., von Rohr, P., Gonnet, G.: Limitations of codon adaptation index and other coding DNA-based features for prediction of protein expression in saccharomyces cerevisiae. Yeast 21, 1083–1093 (2004)CrossRefGoogle Scholar
  11. 11.
    Char, B.W., Geddes, K.O., Gonnet, G.H., Leong, B.L., Monagan, M.B., Watt, S.M.: Maple V Language Reference Manual. Springer, Heidelberg (1991)Google Scholar
  12. 12.
    Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions, ch. 24.1.1. Dover, New York (1972)Google Scholar
  13. 13.
    Kulikova, T., Aldebert, P., Althorpe, N., Baker, W., Bates, K., Browne, P., van den Broek, A., Cochrane, G., Duggan, K., Eberhardt, R., Faruque, N., Garcia-Pastor, M., Harte, N., Kanz, C., Leinonen, R., Lin, Q., Lombard, V., Lopez, R., Mancuso, R., McHale, M., Nardone, F., Silventoinen, V., Stoehr, P., Stoesser, G., Tuli, M.A., Tzouvara, K., Vaughan, R., Wu, D., Zhu, W., Apweiler, R.: The EMBL nucleotide sequence database. Nucleic Acids Res. 32, D27–D30 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Markus T. Friberg
    • 1
  • Pedro Gonnet
    • 1
  • Yves Barral
    • 2
  • Nicol N. Schraudolph
    • 3
    • 4
  • Gaston H. Gonnet
    • 1
  1. 1.Institute of Computational ScienceETH ZurichZurichSwitzerland
  2. 2.Institute of Biochemistry, Department of BiologyETH ZurichSwitzerland
  3. 3.Statistical Machine LearningNational ICT AustraliaCanberraAustralia
  4. 4.RSISEAustralian National UniversityCanberraAustralia

Personalised recommendations