Galois’ Lattice for Video Navigation in a DBMS

  • Ibrahima Mbaye
  • José Martinez
  • Rachid Oulad Haj Thami
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4105)


Digital visual media encounters many problems related to storage, representation, querying and visual presentation. In this paper, we propose a technique for the retrieval of video from a database on the basis of video shots classified by a Galois’ lattice. The result is a kind of hypermedia that combines both classification and visualization properties in order to navigate between key frames and video segments.


Video Retrieval Video Shot Video Database Navigation Method Empty Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rehatschek, H., Kienast, G.: Vizard - an innovative tool for video navigation, retrieval, annotation and editing. In: Proceedings of the 23rd Workshop of PVA: Multimedia and Middleware (2001)Google Scholar
  2. 2.
    Oh, J., Hua, K.: Efficient and cost-effective techniques for browsing and indexing large video databases. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, Dallas, Texas, USA, pp. 415–426 (2000)Google Scholar
  3. 3.
    Rautiainen, M., Ojala, T., Seppänen, T.: Cluster-temporal browsing of large news video databases. In: ICME, pp. 751–754 (2004)Google Scholar
  4. 4.
    Heesch, D., Howarth, P., Magalhàes, J., MAy, A., Pickering, M., Yavlinsky, A., Rüger, S.: Video retrieval using search and browsing. In: TREC Video Retrieval Evaluation Online Proceedings (2004)Google Scholar
  5. 5.
    Bouthemy, P., Dufournaud, Y., Fablet, R., Mohr, R., Peleg, S., Zomet, A.: Video hyper-link creation for content-based browsing and navigation. In: Workshop on Content-Based Multimedia Indexing, CBMI 1999, Toulouse, France (1999)Google Scholar
  6. 6.
    Jiang, H., Elmagarmid, A.K.: Spatial and temporal content-based access to hypervideo databases. The VLDB Journal 7, 226–238 (1998)CrossRefGoogle Scholar
  7. 7.
    Christel, M., Warmack, A.: The effect of text in storyboards for video navigation. In: IEEE Int’l. Conf. Acoustics, Speech and Signal Processing (ICASSP), Salt Lake City, USA (2001)Google Scholar
  8. 8.
    Adams, B., Dorai, C., Venkatesh, S.: Novel approach to determining tempo and dramatic story sections in motion pictures. In: ICIP (2000)Google Scholar
  9. 9.
    Fischer, S., Lienhart, R., Effelsberg, W.: Automatic recognition of film genres. In: Proceedings ACM Multimedia retrieval (1995)Google Scholar
  10. 10.
    Isakowitz, T., Stohr, E.A., Balasubramanian, P.: RMM: A methodology for structured hypermedia design. Communications of the ACM 38, 34–44 (1995)CrossRefGoogle Scholar
  11. 11.
    Schwabe, D., Rossi, G., Barbosa, S.D.J.: Systematic hypermedia application design with OOHDM. In: Proceedings of the 7th ACM Conference on Hypertext, Washington, DC, pp. 116–128 (1996)Google Scholar
  12. 12.
    Godin, R., Missaoui, R., Alaoui, H.: Incremental concept formation algorithms based on galois (concept) lattices. Computational Intelligence 11, 246–267 (1995)CrossRefGoogle Scholar
  13. 13.
    Martinez, J., Loisant, E.: Browsing image databases with Galois’ lattices. In: Proceedings of the 17th ACM International Symposium on Applied Computing (ACM SAC), Multimedia and Visualisation Track, Madrid, Spain, pp. 971–975. ACM Computer Press, New York (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ibrahima Mbaye
    • 1
  • José Martinez
    • 2
  • Rachid Oulad Haj Thami
    • 1
  1. 1.WiM Group, SI2M (ENSIAS)RabatMaroc
  2. 2.ATLAS Group, INRIA & LINA (FRE CNRS 2729)Nantes

Personalised recommendations