Dirty-Paper Writing Based on LDPC Codes for Data Hiding

  • Çagatay Dikici
  • Khalid Idrissi
  • Atilla Baskurt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4105)


We describe a new binning technic for informed data hiding problem. In information theoretical point of view, the blind watermarking problem can be seen as transmitting a secret message M through a noisy channel on top of an interfered host signal S that is available only at the encoder. We propose an embedding scheme based on Low Density Parity Check(LDPC) codes, in order to quantize the host signal in an intelligent manner so that the decoder can extract the hidden message with a high probability. A mixture of erasure and symmetric error channel is realized for the analysis of the proposed method.


Secret Message Watermark Scheme Turbo Code Data Hiding Check Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moulin, P., Koetter, R.: Data-Hiding Codes. Proceedings of IEEE 93(12), 2083–2127 (2005)CrossRefGoogle Scholar
  2. 2.
    Cox, I.J., Miller, M.L.: The first 50 years of electronic watermarking. EURASIP JASP 2, 126–132 (2002)Google Scholar
  3. 3.
    Gel’fand, S., Pinsker, M.: Coding for channel with random parameters. Problems of Control and Information Theory 9, 19–31 (1980)MATHMathSciNetGoogle Scholar
  4. 4.
    Costa, M.: Writing on dirty paper. IEEE Trans. on Information Theory 29, 439–441 (1983)MATHCrossRefGoogle Scholar
  5. 5.
    Cox, I.J., Miller, M.L., McKellips, A.L.: Watermarking as communications with side information. Proceedings of the IEEE 87, 1127–1141 (1999)CrossRefGoogle Scholar
  6. 6.
    Chappelier, V., Guillemot, C., Marinkovic, S.: Turbo Trellis Coded Quantization. In: Proc. of the Intl. Symp. on Turbo Codes (September 2003)Google Scholar
  7. 7.
    Miller, M.L., Dodrr, G.J., Cox, I.J.: Applying informed coding and informed embedding to design a robust, high capacity watermark. IEEE Trans. on Image Processing 3(6), 792–807 (2004)CrossRefGoogle Scholar
  8. 8.
    Eggers, J., Buml, R., Tzschoppe, R., Girod, B.: Scalar costa scheme for information embedding. IEEE Trans. Signal Processing (2002)Google Scholar
  9. 9.
    Bastug, A., Sankur, B.: Improving the Payload of Watermarking Channels via LDPC Coding. IEEE Signal Proc. Letters 11(2), 90–92 (2004)CrossRefGoogle Scholar
  10. 10.
    Marcellin, M.W., Fisher, T.R.: Trellis-coded quantization of memoryless and gauss-markov sources. IEEE Trans. Comm. 38, 82–93 (1990)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Gallager, R.G.: Low density parity check codes, Ph.D. dissertation. MIT, Cambridge (1963)Google Scholar
  12. 12.
    Martinian, E., Yedidia, J.S.: Iterative Quantization Using Codes On Graphs. In: Proc. of 41st Annual Allerton Conference on Communications, Control, and Computing (2003)Google Scholar
  13. 13.
    MacKay, D.J.C., Neal, R.M.: Near Shannon limit performance of low density parity check codes. Electronics Letters 33, 457–458 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Çagatay Dikici
    • 1
  • Khalid Idrissi
    • 1
  • Atilla Baskurt
    • 1
  1. 1.Laboratoire d’InfoRmatique en Images et Systèmes d’information, LIRIS, UMR 5205 CNRSINSA de LyonFrance

Personalised recommendations