Skip to main content

Motion-Information-Based Video Retrieval System Using Rough Pre-classification

  • Conference paper

Part of the Lecture Notes in Computer Science book series (TRS,volume 4100)

Abstract

Motion information is the basic element for analyzing video. It represents the change of video on the time-axis and plays an important role in describing the video content. In this paper, a robust motion-based, video retrieval system is proposed. At first, shot boundary detection is achieved by analyzing luminance information, and motion information of video is abstracted and analyzed. Then rough set theory is introduced to classify the shots into two classes, global motions and local motions. Finally, shots of these two types are respectively retrieved according to the motion types of submitted shots. Experiments show that it’s effective to distinguish shots with global motions from those with local motions in various types of video, and in this situation motion-information-based video retrieval are more accurate.

Keywords

  • Global motion
  • local motion
  • shot boundary detection
  • video retrieval
  • rough sets

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adiv, G.: Determining Three-Dimensional Motion and Structure from Optical Flow Generated by Several Moving Objects. IEEE PAMI, 384–401 (1985)

    Google Scholar 

  2. Chapelle, O., Haffner, P., Vapnik, V.N.: Support Vector Machines for Histogram-Based Image Classification. IEEE Trans. on Neural Networks 10, 1055–1064 (1999)

    CrossRef  Google Scholar 

  3. Divakaran, A., Sun, H.: Descriptor for Spatial Distribution of Motion Activity for Compressed Video. In: SPIE, vol. 2972, pp. 392–398 (2000)

    Google Scholar 

  4. Dufaux, F., Konrad, J.: Efficient, Robust, and Fast Global Motion Estimation for Video Coding. IEEE Trans. on Image Process 9, 497–501 (2000)

    CrossRef  Google Scholar 

  5. Giunta, G., Mascia, U.: Estimation of Global Motion Parameters by Complex Linear Regression. IEEE Trans. on Image Process 8, 1652–1657 (1999)

    CrossRef  Google Scholar 

  6. Grzymała-Busse, J.W., Hu, M.: A comparison of several approaches to missing attribute values in data mining. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS, vol. 2005, pp. 378–385. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  7. Hu, X.H., Cercone, N.: Learning in Relational Databases: a Rough Set Approach. Computational Intelligence 11, 323–337 (1995)

    CrossRef  Google Scholar 

  8. Institute of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China: http://cs.cqupt.edu.cn/videoretrieval

  9. Knowledge Systems Group: Rosseta Technical Reference Manual (1999)

    Google Scholar 

  10. Lu, H.B., Zhang, T.J.: An Effective Shot Cut Detection Method. Journal of Image and Graphics, 805–810 (1999)

    Google Scholar 

  11. Ma, Y.F., Zhang, H.J.: Motion Pattern Based Video Classification and Retrieval. EURASIP JASP 2, 199–208 (2003)

    Google Scholar 

  12. Moving Picture Experts Group: http://www.chiariglione.org/mpeg/

  13. MPEG Video Group: MPEG-2. ISO/IEC (1994)

    Google Scholar 

  14. MPEG Video Group: Overview of the MPEG-7 standard. ISO/IEC (2001)

    Google Scholar 

  15. Nguyen, S.H., Skowron, A.: Quantization of Real Value Attributes-Rough Set and Boolean Reasoning Approach. In: Proc. of the Second Joint Conference on Information Sciences, vol. 2, pp. 34–37 (1995)

    Google Scholar 

  16. Pawlak, Z.: Classification of objects by means of attributes, Research Report PAS 429, Institute of Computer Science, Polish Academy of Sciences (January 1981) ISSN 138-0648

    Google Scholar 

  17. Pawlak, Z.: Rough Sets, Research Report PAS 431, Institute of Computer Science, Polish Academy of Sciences (1981)

    Google Scholar 

  18. Pawlak, Z.: Rough Set. International Journal of Computer and Information Sciences 11, 341–356 (1982)

    CrossRef  MATH  MathSciNet  Google Scholar 

  19. Pawlak, Z., Grzymała-Busse, J., Slowinski, R.: Rough Sets. Communications of the ACM 38, 89–95 (1995)

    CrossRef  Google Scholar 

  20. Skowron, A., Rauszer, C.: The Discernibility Matrices and Functions in Information System. Intelligent Decision Support Handbook of Applications and Advances of the Rough Sets Theory 2, 331–338 (1992)

    Google Scholar 

  21. Sudhir, G., Lee, J.C.M.: Video Annotation by Motion Interpretation Using Optical Flow Streams. Journal of Visual Communication and Image Representation 7, 354–368 (1996)

    CrossRef  Google Scholar 

  22. Tan, Y.P., Saur, D.D., Kulkarni, S.R., Ramadge, P.J.: Rapid Estimation of Camera Motion from Compressed Video with Application to Video Annotation. IEEE Tans. on Circuits Syst. Video Techo. 10, 133–145 (2000)

    CrossRef  Google Scholar 

  23. Tekalp, A.M.: Digital Video Processing. Prentice-Hall, Englewood Cliffs (1995)

    Google Scholar 

  24. Wang, G.Y., Zhao, J., An, J.J., Wu, Y.: Theoretical Study on Attribute Reduction of Rough Set Theory: in Algebra View and Information View. In: Third International Conference on Cognitive Informatics, pp. 148–155 (2004)

    Google Scholar 

  25. Wang, G.Y.: Rough Set Theory and Knowledge Acquisition. Xi’an Jiaotong University 20, 102–116 (2001)

    Google Scholar 

  26. Wang, G.Y., Yang, D.C., Yu, H.: Condition-Information-Entropy-Based Decision Table Reduction. Chinese Journal of Computers 2, 759–766 (2002)

    MathSciNet  Google Scholar 

  27. Wang, G.Y., Liu, F., Wu, Y.: Generating Rules and Reasoning under Inconsistencies. In: Proceedings of IEEE Intl. Conf. on Industrial Electronics, Control and Instrumentation, pp. 646–649 (2000)

    Google Scholar 

  28. Yin, D.S., Wang, G.Y., Wu, Y.: A Self-learning Algorithm for Decision Tree Pre-pruning. In: Proceedings of the Third International Conference on Machine Learning and Cybernetics, pp. 2140–2145 (2004)

    Google Scholar 

  29. Yoo, K.Y., Kim, J.K.: A New Fast Local Motion Estimation Algorithm Using Global Motion. Signal Processing 68, 219–224 (1998)

    CrossRef  MATH  Google Scholar 

  30. Yu, T.L., Zhang, S.J.: Video Retrieval Based on the Global Motion Information. Acta Electronica Sinica 29, 1794–1798 (2001)

    Google Scholar 

  31. Zhang, H.J., Kankanhalli, Smoliar, A.: Automatic Partitioning of Video. Multimedia System, 10–28 (1993)

    Google Scholar 

  32. Wang, G.Y., Zheng, Z., Zhang, Y.: RIDAS– A Rough Set Based Intelligent Data Analysis System. In: Proceedings of the First Int. Conf. on Machine Learning and Cybernetics, pp. 646–649 (2002)

    Google Scholar 

  33. Zhong, D., Chang, S.F.: Video Object Model and Segmentation for Content-Based Video Indexing. In: Proc. ISCAS 1997, pp. 1492–1495 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yuan, Z., Wu, Y., Wang, G., Li, J. (2006). Motion-Information-Based Video Retrieval System Using Rough Pre-classification. In: Peters, J.F., Skowron, A. (eds) Transactions on Rough Sets V. Lecture Notes in Computer Science, vol 4100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11847465_15

Download citation

  • DOI: https://doi.org/10.1007/11847465_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-39382-5

  • Online ISBN: 978-3-540-39383-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics