Skip to main content

Multimodal Classification: Case Studies

  • Conference paper

Part of the Lecture Notes in Computer Science book series (TRS,volume 4100)

Abstract

Data models that are induced in classifier construction often consist of multiple parts, each of which explains part of the data. Classification methods for such multi-part models are called multimodal classification methods. The model parts may overlap or have insufficient coverage. How to deal best with the problems of overlapping and insufficient coverage? In this paper we propose a hierarchical or layered approach to this problem. Rather than seeking a single model, we consider a series of models under gradually relaxing conditions, which form a hierarchical structure. To demonstrate the effectiveness of this approach we consider two classifiers that construct multi-part models – one based on the so-called lattice machine and the other one based on rough set rule induction, and we design hierarchical versions of the two classifiers. The two hierarchical classifiers are compared through experiments with their non-hierarchical counterparts, and also with a method that combines k-nearest neighbors classifier with rough set rule induction as a benchmark. The results of the experiments show that this hierarchical approach leads to improved multimodal classifiers.

Keywords

  • hierarchical classification
  • multimodal classifier
  • lattice machine
  • rough sets
  • rule induction
  • k-nearest neighbors

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bazan, J.: A Comparison of Dynamic and non-Dynamic Rough Set Methods for Extracting Laws from Decision Table. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery, pp. 321–365. Physica-Verlag, Heidelberg (1998)

    Google Scholar 

  2. Bazan, J.G.: Classifiers based on two-layered learning. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 356–361. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  3. Bazan, J.G., Nguyen, S.H., Nguyen, H.S., Skowron, A.: Rough set methods in approximation of hierarchical concepts. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 346–355. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  4. Bazan, J.G., Son Nguyen, H., Hoa Nguyen, S., Synak, P., Wróblewski, J.: Rough Set Algorithms in Classification Problem. In: Polkowski, L., Tsumoto, S., Lin, T.Y. (eds.) Rough Set Methods and Applications, pp. 49–88. Physica-Verlag, Heidelberg (2000)

    Google Scholar 

  5. Bazan, J.G., Szczuka, M.S.: The Rough Set Exploration System. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets III. LNCS, vol. 3400, pp. 37–56. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  6. Bazan, J.G., Szczuka, M.S., Wojna, A., Wojnarski, M.: On the Evolution of Rough Set Exploration System. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 592–601. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  7. Bazan, J.G., Szczuka, M.S., Wróblewski, J.: A New Version of Rough Set Exploration System. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 397–404. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  8. Behnke, S.: Hierarchical Neural Networks for Image Interpretation. LNCS (LNAI), vol. 2766. Springer, Heidelberg (2003)

    CrossRef  MATH  Google Scholar 

  9. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998)

    Google Scholar 

  10. Cost, S., Salzberg, S.: A weighted nearest neighbor algorithm for learning with symbolic features. Machine Learning 10, 57–78 (1993)

    Google Scholar 

  11. Dietterich, T.G.: Ensemble Learning. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks, 2nd edn., pp. 405–408. The MIT Press, Cambridge (2002)

    Google Scholar 

  12. Dudani, S.A.: The distance weighted k-nearest neighbor rule. IEEE Trans. Syst. Man Cyber. 6, 325–327 (1976)

    Google Scholar 

  13. Düntsch, I., Gediga, G.: Simple data filtering in rough set systems. International Journal of Approximate Reasoning 18(1–2), 93–106 (1998)

    CrossRef  MATH  MathSciNet  Google Scholar 

  14. Fix, E., Hodges, J.L.: Discriminatory analysis, nonparametric discrimination: Consistency properties. Technical Report TR4, USAF School of Aviation Medicine, Randolph Field, TX (1951)

    Google Scholar 

  15. Góra, G., Wojna, A.G.: RIONA: a new classification system combining rule induction and instance-based learning. Fundamenta Informaticae 51(4), 369–390 (2002)

    MATH  MathSciNet  Google Scholar 

  16. Handl, J., Knowles, J.: Cluster generators: synthetic data for the evaluation of clustering algorithms, http://dbkweb.ch.umist.ac.uk/handl/generators/

  17. Nguyen, S.H., Bazan, J.G., Skowron, A., Nguyen, H.S.: Layered learning for concept synthesis. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS (LNAI), vol. 3100, pp. 187–208. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  18. Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  19. Poggio, T., Smale, S.: The Mathematics of Learning: Dealing with Data. Notices of the AMS 50(5), 537–544 (2003)

    MATH  MathSciNet  Google Scholar 

  20. Quinlan, R.: Improved Use of Continuous Attributes in C4.5. Journal of Artificial Intelligence Research 4, 77–90 (1996)

    MATH  Google Scholar 

  21. Quinlan, R.: Rulequest research data mining tools, http://www.rulequest.com/

  22. RSES: Rough set exploration system, Institute of Mathematics, Warsaw University, Poland, http://logic.mimuw.edu.pl/rses

  23. Skowron, A.: Boolean reasoning for decision rules generation. In: Komorowski, J., Raś, Z.W. (eds.) ISMIS 1993. LNCS (LNAI), vol. 689, pp. 295–305. Springer, Heidelberg (1993)

    Google Scholar 

  24. Skowron, A., Wang, H., Wojna, A., Bazan, J.G.: A Hierarchical Approach to Multimodal Classification. In: Ślęzak, D., Yao, J., Peters, J.F., Ziarko, W.P., Hu, X. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3642, pp. 119–127. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  25. Snedecor, G.W., Cochran, W.G.: Statisitical Methods, 8th edn. Iowa State University Press, Ames (2002)

    Google Scholar 

  26. Stanfill, C., Waltz, D.: Toward memory-based reasoning. Communication of ACM 29, 1213–1229 (1986)

    CrossRef  Google Scholar 

  27. Stone, P.: Layered Learning in Multi-agent Systems: A Winning Approach to Robotic Soccer. MIT Press, Cambridge (2000)

    Google Scholar 

  28. Vapnik, V.N.: Statistical learning theory. Wiley, New York (1998)

    MATH  Google Scholar 

  29. Wang, H.: Nearest neighbors by neighborhood counting. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(6) (June 2006)

    Google Scholar 

  30. Wang, H., Dubitzky, W., Düntsch, I., Bell, D.: A lattice machine approach to automated casebase design: Marrying lazy and eager learning. In: Proc. IJCAI 1999, Stockholm, Sweden, pp. 254–259 (1999)

    Google Scholar 

  31. Wang, H., Düntsch, I., Bell, D.: Data reduction based on hyper relations. In: Proceedings of KDD 1998, pp. 349–353. New York (1998)

    Google Scholar 

  32. Wang, H., Düntsch, I., Gediga, G.: Classificatory filtering in decision systems. International Journal of Approximate Reasoning 23, 111–136 (2000)

    CrossRef  MATH  MathSciNet  Google Scholar 

  33. Wang, H., Düntsch, I., Gediga, G., Skowron, A.: Hyperrelations in version space. International Journal of Approximate Reasoning 36(3), 223–241 (2004)

    CrossRef  MATH  MathSciNet  Google Scholar 

  34. Wilson, D.R., Martinez, T.R.: Improved heterogeneous distance functions. Journal of Artificial Intelligence Research 6, 1–34 (1997)

    MATH  MathSciNet  Google Scholar 

  35. Wojna, A.: Analogy-Based Reasoning in Classifier Construction. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets IV. LNCS, vol. 3700, pp. 277–374. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Skowron, A., Wang, H., Wojna, A., Bazan, J. (2006). Multimodal Classification: Case Studies. In: Peters, J.F., Skowron, A. (eds) Transactions on Rough Sets V. Lecture Notes in Computer Science, vol 4100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11847465_11

Download citation

  • DOI: https://doi.org/10.1007/11847465_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-39382-5

  • Online ISBN: 978-3-540-39383-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics