Skip to main content

P300 Wave Detection Based on Rough Sets

  • Conference paper

Part of the Lecture Notes in Computer Science book series (TRS,volume 4100)

Abstract

The goal of P300 wave detection is to extract relevant features from the huge number of electrical signals and to detect the P300 component accurately. This paper introduces a modified approach to P300 wave detection combined with an application of rough set methods and non-rough set based methods to classify P300 signals. The modifications include an averaging method using Mexican hat wavelet coefficients to extract features of signals. The data set has been expanded to include signals from six words and a total of 3960 objects. Experiments with a variety of classifiers were performed. The signal data analysis includes comparisons of error rates, true positives and false negatives performed using a paired t-test. It has been found that the false negatives are better indicators of efficacy of the feature extraction method rather than error rate due to the nature of the signal data. The contribution of this paper is an in-depth study P300 wave detection using a modified averaging method for feature extraction together with rough set-based classification on an expanded data set.

Keywords

  • Brain computer interface
  • EEG signal classification
  • Mexican hat wavelet
  • P300 wave detection
  • feature extraction
  • rough sets

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bayliss, J.D.: The use of the P3 evoked potential component for control in a virtual apartment. IEEE Transactions on Rehabilitation Engineering 11(2), 113–116 (2003)

    CrossRef  MathSciNet  Google Scholar 

  2. Bazan, J.G., Szczuka, M.S.: The Rough Set Exploration System. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets III. LNCS (LNAI), vol. 3400, pp. 37–56. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  3. Bennington, J., Polich, J.: Comparison of P300 from passive and active tasks for auditory stimuli and visual stimuli. International Journal of Psychophysiology 34, 171–177 (1999)

    CrossRef  Google Scholar 

  4. Bernat, E., Shevrin, H., Snodgrass, M.: Subliminal visual oddball stimuli evoke a P300 component. Clinical Neurophysiology 112, 159–171 (2001)

    CrossRef  Google Scholar 

  5. Blankertz, B., Müller, K.-R., Curio, G., Vaughan, T.M., Schalk, G., Wolpaw, J.R., Schlögl, A., Neuper, C., Pfurtscheller, G., Hinterberger, T., Schröder, M., Birbaumer, N.: The BCI Competition 2003: Progress and perspectives in detection and discrimination of EEG single trials. IEEE Trans. Biomed. Eng. 51, 1044–1051 (2004)

    CrossRef  Google Scholar 

  6. Cohen, W.W.: Fast effective rule induction. In: Prieditis, A., Russell, S. (eds.) Proceedings of the Twelfth International Conference on Machine Learning, pp. 115–123. Morgan Kauffman, San Francisco (1995)

    Google Scholar 

  7. Donchin, E., Spencer, K.M., Wijensighe, R.: The mental prosthesis: Assessing the speed of a P300-based brain-computer interface. IEEE Trans. Rehab. Eng. 8, 174–179 (2000)

    CrossRef  Google Scholar 

  8. Fazel-Rezai, R., Peters, J.F.: P300 Wave Feature Extraction: Preliminary Results. In: Proceedings of the Canadian Conference of Electrical and Computer Engineering, Saskatoon, SK, Canada, pp. 376–379 (2005)

    Google Scholar 

  9. Fazel-Rezai, R., Ramanna, S.: Brain Signals: Feature Extraction and Classification Using Rough Set Methods. In: Ślęzak, D., Yao, J., Peters, J.F., Ziarko, W.P., Hu, X. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3642, pp. 709–718. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  10. Farwell, L.A., Donchin, E.: Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70, 510–523 (1988)

    CrossRef  Google Scholar 

  11. Frodl-Bauch, T., Bottlender, R., Hegerl, U.: Neurochemical substrates and neuroanatomical generators of the event-related P300. Neuropsychobiology 40, 86–94 (1999)

    CrossRef  Google Scholar 

  12. Gonsalvez, C.J., Polich, J.: P300 amplitude is determined by target-to-target interval. Psychophysiology 39, 388–396 (2002)

    CrossRef  Google Scholar 

  13. Grzymala-Busse, J.W.: LERS - A system for learning from examples based on rough sets. In: Słowiński, R. (ed.) Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory, pp. 3–18. Kluwer Academic Publishers, Dordrecht (1992)

    Google Scholar 

  14. Grzymala-Busse, J.W., Wang, A.Y.: Modified Algorithms LEM1 and LEM2 for rule induction from data with missing attribute values. In: Proceedings of the Fifth International Workshop on Rough Sets and Soft Computing (RSSC 1997) at the Third Joint Conference on Information Sciences (JCIS 1997), North Carolina, pp. 69–72 (1997)

    Google Scholar 

  15. Hogg, R.V., Tanis, E.A.: Probability and Statistical Inference. Macmillan Publishing Co., Inc., New York (1977)

    MATH  Google Scholar 

  16. Hoffmann., U., Garcia., G., Vesin., J., Diserens, K., Ebrahimi, T.: A Boosting Approach to P300 Detection with Application to Brain-Computer Interfaces. In: Proceedings of the IEEE EMBS 2nd Internation Conference on Neural Engineering, Arlington, pp. 1–4 (2005)

    Google Scholar 

  17. Johnson, R.: Developmental evidence for modality-dependent P300 generators: a normative study. Psychophysiology 26, 651–666 (1989)

    CrossRef  Google Scholar 

  18. Katayama, J., Polich, J.: Auditory and visual P300 topography from a 3 stimulus paradigm. Clinical Neurophysiolology 110, 463–468 (1999)

    CrossRef  Google Scholar 

  19. Lazareck, L., Ramanna, S.: Classification of Swallowing Sound Signals: A Rough Set Approach. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 679–684. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  20. Mason, S.G., Birch, G.E.: A general framework for brain-computer interface design. IEEE Transactions on Neural Systems and Rehabilitation Engineering 11(1), 71–85 (2003)

    CrossRef  Google Scholar 

  21. McIsaac, H., Polich, J.: Comparison of infant and adult P300 from auditory stimuli. Journal of Experimental Child Psychology 24, 23–37 (1992)

    Google Scholar 

  22. Nguyen, S.H., Bazan, J.G., Skowron, A., Nguyen, H.S.: Layered Learning for Concept Synthesis. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 187–208. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  23. Nguyen, T.T., Willis, C.P., Paddon, D.J., Nguyen, H.S.: On learning of sunspot classification. In: Klopotek, M.A., Wierzchon, S.T., Trojanowski, K. (eds.) Intelligent Information Systems, Proceedings of IIPWM 2004. Advances in Soft Computing, pp. 58–68. Springer, Berlin (2004)

    Google Scholar 

  24. Pawlak, Z.: Rough sets. International J. Comp. Inform. Science 11(3), 341–356 (1982)

    CrossRef  MathSciNet  MATH  Google Scholar 

  25. Polich, J.: P300 in clinical applications. In: Niedermayer, E., de la Silva, F.L. (eds.) Electroencephalography: basic principles, clinical applications and related fields, Urban and Schwartzenberger, Baltimore-Munich, pp. 1073–1091 (1999)

    Google Scholar 

  26. The RSES Homepage at: http://logic.mimuw.edu.pl/~rses

  27. Sal, J., Lehman, A., Creighton, L.: JMP Start Statistics: A Guide to Statistics and Data Analysis, Statistical Analysis Systems (SAS) Institute, Duxbury, Pacific Grove, CA (2001)

    Google Scholar 

  28. Smith, E.M., Halgren, E., Sokolik, M., Baudena, P., Musolino, A., Liegeois-Chauvel, C., Chauvel, P.: The intracranial topography of the P3 event-related potential elicited during auditory oddball. Electroencephalogram Clinical Neurophysiology 76, 235–248 (1990)

    CrossRef  Google Scholar 

  29. Sutton, S., Braren, M., Zubin, J., John, E.R.: Evoked potentials correlates of stimulus uncertainty. Science 150, 1187–1188 (1965)

    CrossRef  Google Scholar 

  30. Wróblewski, J.: Genetic algorithms in decomposition and classification problem. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery, vol. 1, pp. 471–487. Physica-Verlag, Berlin (1998)

    Google Scholar 

  31. The WEKA Homepagessss at: http://www.cs.waikato.ac.nz/ml/weka

  32. Quinlan, J.R.: Induction of decision trees. Machine Learning 1(1), 81–106 (1986)

    Google Scholar 

  33. Ziarko, W.: Incremental Learning with Hierarchies of Rough Decision Tables. In: Proc. North American Fuzzy Information Processing Society Conf. (NAFIPS 2004), Banff, Alberta, pp. 802–808 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ramanna, S., Fazel-Rezai, R. (2006). P300 Wave Detection Based on Rough Sets. In: Peters, J.F., Skowron, A. (eds) Transactions on Rough Sets V. Lecture Notes in Computer Science, vol 4100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11847465_10

Download citation

  • DOI: https://doi.org/10.1007/11847465_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-39382-5

  • Online ISBN: 978-3-540-39383-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics