Abstract
The goal of P300 wave detection is to extract relevant features from the huge number of electrical signals and to detect the P300 component accurately. This paper introduces a modified approach to P300 wave detection combined with an application of rough set methods and non-rough set based methods to classify P300 signals. The modifications include an averaging method using Mexican hat wavelet coefficients to extract features of signals. The data set has been expanded to include signals from six words and a total of 3960 objects. Experiments with a variety of classifiers were performed. The signal data analysis includes comparisons of error rates, true positives and false negatives performed using a paired t-test. It has been found that the false negatives are better indicators of efficacy of the feature extraction method rather than error rate due to the nature of the signal data. The contribution of this paper is an in-depth study P300 wave detection using a modified averaging method for feature extraction together with rough set-based classification on an expanded data set.
Keywords
- Brain computer interface
- EEG signal classification
- Mexican hat wavelet
- P300 wave detection
- feature extraction
- rough sets
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Bayliss, J.D.: The use of the P3 evoked potential component for control in a virtual apartment. IEEE Transactions on Rehabilitation Engineering 11(2), 113–116 (2003)
Bazan, J.G., Szczuka, M.S.: The Rough Set Exploration System. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets III. LNCS (LNAI), vol. 3400, pp. 37–56. Springer, Heidelberg (2005)
Bennington, J., Polich, J.: Comparison of P300 from passive and active tasks for auditory stimuli and visual stimuli. International Journal of Psychophysiology 34, 171–177 (1999)
Bernat, E., Shevrin, H., Snodgrass, M.: Subliminal visual oddball stimuli evoke a P300 component. Clinical Neurophysiology 112, 159–171 (2001)
Blankertz, B., Müller, K.-R., Curio, G., Vaughan, T.M., Schalk, G., Wolpaw, J.R., Schlögl, A., Neuper, C., Pfurtscheller, G., Hinterberger, T., Schröder, M., Birbaumer, N.: The BCI Competition 2003: Progress and perspectives in detection and discrimination of EEG single trials. IEEE Trans. Biomed. Eng. 51, 1044–1051 (2004)
Cohen, W.W.: Fast effective rule induction. In: Prieditis, A., Russell, S. (eds.) Proceedings of the Twelfth International Conference on Machine Learning, pp. 115–123. Morgan Kauffman, San Francisco (1995)
Donchin, E., Spencer, K.M., Wijensighe, R.: The mental prosthesis: Assessing the speed of a P300-based brain-computer interface. IEEE Trans. Rehab. Eng. 8, 174–179 (2000)
Fazel-Rezai, R., Peters, J.F.: P300 Wave Feature Extraction: Preliminary Results. In: Proceedings of the Canadian Conference of Electrical and Computer Engineering, Saskatoon, SK, Canada, pp. 376–379 (2005)
Fazel-Rezai, R., Ramanna, S.: Brain Signals: Feature Extraction and Classification Using Rough Set Methods. In: Ślęzak, D., Yao, J., Peters, J.F., Ziarko, W.P., Hu, X. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3642, pp. 709–718. Springer, Heidelberg (2005)
Farwell, L.A., Donchin, E.: Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70, 510–523 (1988)
Frodl-Bauch, T., Bottlender, R., Hegerl, U.: Neurochemical substrates and neuroanatomical generators of the event-related P300. Neuropsychobiology 40, 86–94 (1999)
Gonsalvez, C.J., Polich, J.: P300 amplitude is determined by target-to-target interval. Psychophysiology 39, 388–396 (2002)
Grzymala-Busse, J.W.: LERS - A system for learning from examples based on rough sets. In: Słowiński, R. (ed.) Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory, pp. 3–18. Kluwer Academic Publishers, Dordrecht (1992)
Grzymala-Busse, J.W., Wang, A.Y.: Modified Algorithms LEM1 and LEM2 for rule induction from data with missing attribute values. In: Proceedings of the Fifth International Workshop on Rough Sets and Soft Computing (RSSC 1997) at the Third Joint Conference on Information Sciences (JCIS 1997), North Carolina, pp. 69–72 (1997)
Hogg, R.V., Tanis, E.A.: Probability and Statistical Inference. Macmillan Publishing Co., Inc., New York (1977)
Hoffmann., U., Garcia., G., Vesin., J., Diserens, K., Ebrahimi, T.: A Boosting Approach to P300 Detection with Application to Brain-Computer Interfaces. In: Proceedings of the IEEE EMBS 2nd Internation Conference on Neural Engineering, Arlington, pp. 1–4 (2005)
Johnson, R.: Developmental evidence for modality-dependent P300 generators: a normative study. Psychophysiology 26, 651–666 (1989)
Katayama, J., Polich, J.: Auditory and visual P300 topography from a 3 stimulus paradigm. Clinical Neurophysiolology 110, 463–468 (1999)
Lazareck, L., Ramanna, S.: Classification of Swallowing Sound Signals: A Rough Set Approach. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 679–684. Springer, Heidelberg (2004)
Mason, S.G., Birch, G.E.: A general framework for brain-computer interface design. IEEE Transactions on Neural Systems and Rehabilitation Engineering 11(1), 71–85 (2003)
McIsaac, H., Polich, J.: Comparison of infant and adult P300 from auditory stimuli. Journal of Experimental Child Psychology 24, 23–37 (1992)
Nguyen, S.H., Bazan, J.G., Skowron, A., Nguyen, H.S.: Layered Learning for Concept Synthesis. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 187–208. Springer, Heidelberg (2004)
Nguyen, T.T., Willis, C.P., Paddon, D.J., Nguyen, H.S.: On learning of sunspot classification. In: Klopotek, M.A., Wierzchon, S.T., Trojanowski, K. (eds.) Intelligent Information Systems, Proceedings of IIPWM 2004. Advances in Soft Computing, pp. 58–68. Springer, Berlin (2004)
Pawlak, Z.: Rough sets. International J. Comp. Inform. Science 11(3), 341–356 (1982)
Polich, J.: P300 in clinical applications. In: Niedermayer, E., de la Silva, F.L. (eds.) Electroencephalography: basic principles, clinical applications and related fields, Urban and Schwartzenberger, Baltimore-Munich, pp. 1073–1091 (1999)
The RSES Homepage at: http://logic.mimuw.edu.pl/~rses
Sal, J., Lehman, A., Creighton, L.: JMP Start Statistics: A Guide to Statistics and Data Analysis, Statistical Analysis Systems (SAS) Institute, Duxbury, Pacific Grove, CA (2001)
Smith, E.M., Halgren, E., Sokolik, M., Baudena, P., Musolino, A., Liegeois-Chauvel, C., Chauvel, P.: The intracranial topography of the P3 event-related potential elicited during auditory oddball. Electroencephalogram Clinical Neurophysiology 76, 235–248 (1990)
Sutton, S., Braren, M., Zubin, J., John, E.R.: Evoked potentials correlates of stimulus uncertainty. Science 150, 1187–1188 (1965)
Wróblewski, J.: Genetic algorithms in decomposition and classification problem. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery, vol. 1, pp. 471–487. Physica-Verlag, Berlin (1998)
The WEKA Homepagessss at: http://www.cs.waikato.ac.nz/ml/weka
Quinlan, J.R.: Induction of decision trees. Machine Learning 1(1), 81–106 (1986)
Ziarko, W.: Incremental Learning with Hierarchies of Rough Decision Tables. In: Proc. North American Fuzzy Information Processing Society Conf. (NAFIPS 2004), Banff, Alberta, pp. 802–808 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ramanna, S., Fazel-Rezai, R. (2006). P300 Wave Detection Based on Rough Sets. In: Peters, J.F., Skowron, A. (eds) Transactions on Rough Sets V. Lecture Notes in Computer Science, vol 4100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11847465_10
Download citation
DOI: https://doi.org/10.1007/11847465_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-39382-5
Online ISBN: 978-3-540-39383-2
eBook Packages: Computer ScienceComputer Science (R0)
