Zdzisław Pawlak: Life and Work

  • James F. Peters
  • Andrzej Skowron
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4100)


Professor Pawlak’s most widely recognized contribution is his incisive approach to classifying objects with their attributes (features) and his introduction of approximation spaces, which establish the foundations of granular computing and provide frameworks for perception and knowledge discovery in many areas. He was with us only for a short time and, yet, when we look back at his accomplishments, we realize how greatly he has influenced us with his generous spirit and creative work in many areas such as approximate reasoning, intelligent systems research, computing models, mathematics (especially, rough set theory), molecular computing, pattern recognition, philosophy, art, and poetry. This article attempts to give a vignette that highlights some of Pawlak’s remarkable accomplishments. This vignette is limited to a brief coverage of Pawlak’s work in rough set theory, molecular computing, philosophy, painting and poetry. Detailed coverage of these as well as other accomplishments by Pawlak is outside the scope of this commemorative article.


Knowledge Discovery Soft Computing Polish Academy Approximation Space Approximate Reasoning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cantor, G.: Grundlagen einer allgemeinen Mannigfaltigkeitslehre. B.G. Teubner, Leipzig (1883)Google Scholar
  2. 2.
    Frege, G.: Grundgesetzen der Arithmetik, vol. II. Verlag von Hermann Pohle, Jena (1903)Google Scholar
  3. 3.
    Gheorghe, M., Mitrana, V.: A formal language-based approach in biology. Comparative and Functional Genomics 5(1), 91–94 (2004)CrossRefGoogle Scholar
  4. 4.
    Hazelwinkel, M. (ed.): Encyclopaedia of Mathematics, p. 213. Kluwer Academic Publishers, Dordrecht (1995)Google Scholar
  5. 5.
    Keefe, R.: Theories of Vagueness. Cambridge Studies in Philosophy, Cambridge, UK (2000)Google Scholar
  6. 6.
    Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A.: Rough sets: A tutorial. In: Pal, S., Skowron, A. (eds.) Rough Fuzzy Hybridization. A New Trend in Decision Making, pp. 3–98. Springer, Singapore (1999)Google Scholar
  7. 7.
    Konrad, E., Orłowska, E., Pawlak, Z.: Knowledge representation systems. Definability of information, Research Report PAS 433, Institute of Computer Science, Polish Academy of Sciences (April 1981)Google Scholar
  8. 8.
    Konrad, E., Orłowska, E., Pawlak, Z.: On approximate concept learning. Report 81-07, Fachbereich Informatik, TU Berlin, Berlin (1981); short version. Collected Talks, European Conference on Artificial Intelligence, 11/5 Orsay/Paris, pp. 17–19 (1981)Google Scholar
  9. 9.
    Leśniewski, S.: Grungzüge eines neuen Systems der Grundlagen der Mathematik. Fundamenta Mathematicae 14, 1–81 (1929)MATHGoogle Scholar
  10. 10.
    Leśniewski, S.: On the foundations of mathematics. Topoi 2, 7–52 (1982)Google Scholar
  11. 11.
    Marek, W., Pawlak, Z.: Information storage and retrieval systems: Mathematical foundations. Theoretical Computer Science 1, 331–354 (1976)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Orłowska, E., Pawlak, Z.: Expressive power of knowledge representation systems. Research Report PAS 432, Institute of Computer Science, Polish Academy of Sciences (April 1981)Google Scholar
  13. 13.
    Pawlak, Z.: Flip-flop as generator of random binary digits. Mathematical Tables and other Aids to Computation 10(53), 28–30 (1956)MathSciNetGoogle Scholar
  14. 14.
    Pawlak, Z.: Some remarks on “-2” computer. Bulletin of the Polish Academy of Sciences Ser. Tech. 9(4), 22–28 (1961)Google Scholar
  15. 15.
    Pawlak, Z.: Grammar and Mathematics (in Polish) PZWS, Warsaw (1965)Google Scholar
  16. 16.
    Pawlak, Z.: Organization of address-less computers working in parenthesis notation. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 3, 243–262 (1965)Google Scholar
  17. 17.
    Pawlak, Z.: Organization of Address-Less Computers (in Polish). Polish Scientific Publishers, Warsaw (1965)Google Scholar
  18. 18.
    Pawlak, Z.: On the notion of a computer. In: Logic, Methodology and Philosophy of Science, vol. 12, pp. 225–242. North Holland, Amsterdam (1968)Google Scholar
  19. 19.
    Pawlak, Z.: Theory of digital computers. Mathematical Machines 10, 4–31 (1969)MathSciNetGoogle Scholar
  20. 20.
    Pawlak, Z.: Mathematical Aspects of Production Organization (in Polish). Polish Economic Publishers, Warsaw (1969)Google Scholar
  21. 21.
    Pawlak, Z.: A mathematical model of digital computers. Automatentheorie und Formale Sprachen, 16–22 (1973)Google Scholar
  22. 22.
    Pawlak, Z.: Mathematical foundations of information retrieval. In: Proceedings of Symposium of Mathematical Foundations of Computer Science, September 3-8, High Tartras, pp. 135–136 (1973); see also: Mathematical Foundations of Information Retrieval, Computation Center, Polish Academy of Sciences, Research Report CC PAS Report 101 (1973)Google Scholar
  23. 23.
    Pawlak, Z., Rozenberg, G., Savitch, W.J.: Programs for instruction machines. Information and Control 41(1), 9–28 (1979)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Pawlak, Z.: Information systems–Theoretical foundations. Information Systems 6(3), 205–218 (1981)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Pawlak, Z.: Classification of objects by means of attributes, Research Report PAS 429, Institute of Computer Science, Polish Academy of Sciences (January 1981) ISSN 138-0648Google Scholar
  26. 26.
    Pawlak, Z.: Rough Sets, Research Report PAS 431, Institute of Computer Science. Polish Academy of Sciences (1981)Google Scholar
  27. 27.
    Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Pawlak, Z.: Information Systems: Theoretical Foundations (in Polish), WNT, Warsaw (1983)Google Scholar
  29. 29.
    Pawlak, Z.: Rough classification. International Journal of Man-Machine Studies 20(5), 469–483 (1984)MATHCrossRefGoogle Scholar
  30. 30.
    Pawlak, Z.: On conflicts. International Journal of Man-Machine Studies 21, 127–134 (1984)MATHCrossRefGoogle Scholar
  31. 31.
    Pawlak, Z.: On Conflicts (in Polish). Polish Scientific Publishers, Warsaw (1987)Google Scholar
  32. 32.
    Pawlak, Z.: Rough Sets – Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)MATHGoogle Scholar
  33. 33.
    Pawlak, Z.: Anatomy of conflict. Bulletin of the European Association for Theoretical Computer Science 50, 234–247 (1993)MATHGoogle Scholar
  34. 34.
    Pawlak, Z.: An inquiry into anatomy of conflicts. Journal of Information Sciences 109, 65–78 (1998)CrossRefMathSciNetGoogle Scholar
  35. 35.
    Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences. An International Journal (to appear, 2006)Google Scholar
  36. 36.
    Pawlak, Z., Skowron, A.: Rough sets: Some extensions. Information Sciences. An International Journal (to appear, 2006)Google Scholar
  37. 37.
    Pawlak, Z., Skowron, A.: Rough sets and Boolean reasoning. Information Sciences. An International Journal (to appear, 2006)Google Scholar
  38. 38.
    Polkowski, L., Skowron, A.: Rough mereology: A new paradigm for approximate reasoning. International Journal of Approximate Reasoning 15(4), 333–365 (1996)MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Rough Set Database System, version 1.3,
  40. 40.
    Russell, B.: The Principles of Mathematics. G. Allen & Unwin, Ltd., London (1903)MATHGoogle Scholar
  41. 41.
    Wikipedia summary of the life and work of Z. Pawlak,
  42. 42.
    Zadeh, L.A.: A new direction in AI: Toward a computational theory of perceptions. AI Magazine 22(1), 73–84 (2001)Google Scholar
  43. 43.
    Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.): RSCTC 2002. LNCS, vol. 2475. Springer, Heidelberg (2002)MATHGoogle Scholar
  44. 44.
    Cios, K., Pedrycz, W., Swiniarski, R.: Data Mining Methods for Knowledge Discovery. Kluwer, Norwell (1998)MATHGoogle Scholar
  45. 45.
    Czaja, L., Burkhard, H.D., Lindeman, G., Suraj, Z. (eds.): Special Issue on Currency Specification and Programming. Fundamenta Informaticae 67(1-3) (2005)Google Scholar
  46. 46.
    Demri, S., Orłowska, E. (eds.): Incomplete Information: Structure, Inference, Complexity. Monographs in Theoretical Computer Sience. Springer, Heidelberg (2002)MATHGoogle Scholar
  47. 47.
    Doherty, P., Łukaszewicz, W., Skowron, A., Szałas, A.: Knowledge Engineering: A Rough Set Approach. Series in Fuzzines and Soft Computing, vol. 202. Springer, Heidelberg (2006)MATHGoogle Scholar
  48. 48.
    Dunin-Kȩplicz, B., Jankowski, A., Skowron, A., Szczuka, M. (eds.): Monitoring, Security, and Rescue Tasks in Multiagent Systems (MSRAS 2004). Advances in Soft Computing. Springer, Heidelberg (2005)Google Scholar
  49. 49.
    Düntsch, I., Gediga, G.: Rough Set Data Analysis: A Road to Non-invasive Knowledge Discovery. Methodos Publishers, Bangor (2000)Google Scholar
  50. 50.
    Grzymała-Busse, J.W.: Managing Uncertainty in Expert Systems. Kluwer Academic Publishers, Norwell (1990)Google Scholar
  51. 51.
    Hirano, S., Inuiguchi, M., Tsumoto, S. (eds.): Proceedings of International Workshop on Rough Set Theory and Granular Computing (RSTGC 2001), Matsue, Shimane, Japan, May 20-22 (2001); Bulletin of the International Rough Set Society, vol. 5(1-2). International Rough Set Society, Matsue, Shimane (2001)Google Scholar
  52. 52.
    Inuiguchi, M., Hirano, S., Tsumoto, S. (eds.): Rough Set Theory and Granular Computing. Studies in Fuzziness and Soft Computing, vol. 125. Springer, Heidelberg (2003)MATHGoogle Scholar
  53. 53.
    Inuiguchi, M., Greco, S., Miyamoto, S., Nguyen, H.S., Słowinski, R. (eds.): Int. Conf. on Rough Sets and Current Trends in Computing, Kobe, Japan, 6-8 November. LNCS (LNAI). Springer, Heidelberg (to appear, 2006)Google Scholar
  54. 54.
    Kostek, B.: Soft Computing in Acoustics, Applications of Neural Networks, Fuzzy Logic and Rough Sets to Physical Acoustics. Studies in Fuzziness and Soft Computing, vol. 31. Physica-Verlag, Heidelberg (1999)Google Scholar
  55. 55.
    Kostek, B.: Perception-Based Data Processing in Acoustics. Applications to Music Information Retrieval and Psychophysiology of Hearing. Studies in Computational Intelligence, vol. 3. Springer, Heidelberg (2005)Google Scholar
  56. 56.
    Lin, T.Y. (ed.): Special issue, Journal of the Intelligent Automation and Soft Computing 2(2) (1996)Google Scholar
  57. 57.
    Lin, T.Y., Cercone, N. (eds.): Rough Sets and Data Mining - Analysis of Imperfect Data. Kluwer Academic Publishers, Boston (1997)Google Scholar
  58. 58.
    Lin, T.Y., Wildberger, A.M. (eds.): Soft Computing: Rough Sets, Fuzzy Logic, Neural Networks, Uncertainty Management. Knowledge Discovery, Simulation Councils, Inc., San Diego, CA, USA (1995)Google Scholar
  59. 59.
    Lin, T.Y., Yao, Y.Y., Zadeh, L.A. (eds.): Rough Sets, Granular Computing and Data Mining. Studies in Fuzziness and Soft Computing. Physica-Verlag, Heidelberg (2001)Google Scholar
  60. 60.
    Mitra, S., Acharya, T.: Data Mining. Multimedia, Soft Computing, and Bioinformatics. John Wiley & Sons, New York (2003)Google Scholar
  61. 61.
    Munakata, T.: Fundamentals of the New Artificial Intelligence: Beyond Traditional Paradigms. Graduate Texts in Computer Science, vol. 10. Springer, New York (1998)MATHGoogle Scholar
  62. 62.
    Orłowska, E. (ed.): Incomplete Information: Rough Set Analysis. Studies in Fuzziness and Soft Computing, vol. 13. Springer-Verlag/Physica-Verlag, Heidelberg (1997)Google Scholar
  63. 63.
    Pal, S.K., Pedrycz, W., Skowron, A., Swiniarski, R. (eds.): Special volume: Rough-neuro computing. Neurocomputing, vol. 36 (2001)Google Scholar
  64. 64.
    Pal, S.K., Polkowski, L., Skowron, A. (eds.): Rough-Neural Computing: Techniques for Computing with Words. Cognitive Technologies. Springer, Heidelberg (2004)MATHGoogle Scholar
  65. 65.
    Pal, S.K., Skowron, A. (eds.): Rough Fuzzy Hybridization: A New Trend in Decision-Making. Springer, Singapore (1999)MATHGoogle Scholar
  66. 66.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. In: System Theory, Knowledge Engineering and Problem Solving, vol. 9. Kluwer Academic Publishers, Dordrecht (1991)Google Scholar
  67. 67.
    Pawlak, Z., Grzymała-Busse, J., Slowinski, R., Ziarko, W. (eds.): Rough Sets. Special Issue of the Communications of the ACM, vol. 38(11) (November 1995)Google Scholar
  68. 68.
    Pawlak, Z., Polkowski, L., Skowron, A.: Rough sets and rough logic: A KDD perspective. In: Polkowski, et al. (eds.) [78], pp. 583–646Google Scholar
  69. 69.
    Peters, J.F. (ed.): Threads in Fuzzy Petri Net Research. Special Issue of the International Journal of Intelligent Systems 14(8) (August 1999)Google Scholar
  70. 70.
    Peters, J.F., Skowron, A. (eds.): A Rough Set Approach to Reasoning About Data. Special Issue of the International Journal of Intelligent Systems 16(1) (January 2001)Google Scholar
  71. 71.
    Peters, J.F., Skowron, A.: Transactions on Rough Sets: Journal Subline. LNCS. Springer, Heidelberg,
  72. 72.
    Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.): Transactions on Rough Sets I. LNCS, vol. 3100. Springer, Heidelberg (2004)MATHGoogle Scholar
  73. 73.
    Peters, J.F., Skowron, A. (eds.): Transactions on Rough Sets III. LNCS, vol. 3400. Springer, Heidelberg (2005)MATHGoogle Scholar
  74. 74.
    Peters, J.F., Skowron, A. (eds.): Transactions on Rough Sets IV. LNCS, vol. 3700. Springer, Heidelberg (2005)MATHGoogle Scholar
  75. 75.
    Peters, J.F., Skowron, A., Dubois, D., Grzymała-Busse, J.W., Inuiguchi, M., Polkowski, L. (eds.): Transactions on Rough Sets II. LNCS, vol. 3135. Springer, Heidelberg (2004)MATHGoogle Scholar
  76. 76.
    Wang, G.-Y., Peters, J.F., Skowron, A., Yao, Y. (eds.): RSKT 2006. LNCS (LNAI), vol. 4062. Springer, Heidelberg (2006), MATHGoogle Scholar
  77. 77.
    Polkowski, L.: Rough Sets: Mathematical Foundations. Advances in Soft Computing. Physica-Verlag, Heidelberg (2002)MATHGoogle Scholar
  78. 78.
    Polkowski, L., Lin, T.Y., Tsumoto, S. (eds.): Rough Set Methods and Applications: New Developments in Knowledge Discovery in Information Systems. Studies in Fuzziness and Soft Computing, vol. 56. Springer-Verlag/Physica-Verlag, Heidelberg (2000)Google Scholar
  79. 79.
    Polkowski, L., Skowron, A. (eds.): RSCTC 1998. LNCS (LNAI), vol. 1424. Springer, Heidelberg (1998)MATHGoogle Scholar
  80. 80.
    Polkowski, L., Skowron, A. (eds.): Rough Sets in Knowledge Discovery 1: Methodology and Applications. Studies in Fuzziness and Soft Computing, vol. 18. Physica-Verlag, Heidelberg (1998)MATHGoogle Scholar
  81. 81.
    Polkowski, L., Skowron, A. (eds.): Rough Sets in Knowledge Discovery 2: Applications, Case Studies and Software Systems. Studies in Fuzziness and Soft Computing, vol. 19. Physica-Verlag, Heidelberg (1998)MATHGoogle Scholar
  82. 82.
    Zhong, N., Skowron, A., Ohsuga, S. (eds.): RSFDGrC 1999. LNCS (LNAI), vol. 1711. Springer, Heidelberg (1999)MATHGoogle Scholar
  83. 83.
    Skowron, A., Pal, S.K. (eds.): Special volume: Rough sets, pattern recognition and data mining. Pattern Recognition Letters 24(6) (2003)Google Scholar
  84. 84.
    Skowron, A., Pawlak, Z., Komorowski, J., Polkowski, L.: A rough set perspective on data and knowledge. In: Kloesgen, W., Żytkow, J. (eds.) Handbook of KDD, pp. 134–149. Oxford University Press, Oxford (2002)Google Scholar
  85. 85.
    Skowron, A., Szczuka, M. (eds.): Proceedings of the Workshop on Rough Sets in Knowledge Discovery and Soft Computing at ETAPS 2003, April 12-13, 2003. Electronic Notes in Computer Science, vol. 82(4). Elsevier, Amsterdam (2003), Google Scholar
  86. 86.
    Ślęzak, D., Wang, G., Szczuka, M.S., Düntsch, I., Yao, Y. (eds.): RSFDGrC 2005. LNCS (LNAI), vol. 3641. Springer, Heidelberg (2005)Google Scholar
  87. 87.
    Ślęzak, D., Yao, J., Peters, J.F., Ziarko, W.P., Hu, X. (eds.): RSFDGrC 2005. LNCS (LNAI), vol. 3642. Springer, Heidelberg (2005)Google Scholar
  88. 88.
    Słowiński, R. (ed.): Intelligent Decision Support - Handbook of Applications and Advances of the Rough Sets Theory. System Theory, Knowledge Engineering and Problem Solving, vol. 11. Kluwer Academic Publishers, Dordrecht (1992)MATHGoogle Scholar
  89. 89.
    Terano, T., Nishida, T., Namatame, A., Tsumoto, S., Ohsawa, Y., Washio, T. (eds.): JSAI-WS 2001. LNCS (LNAI), vol. 2253. Springer, Heidelberg (2001)MATHGoogle Scholar
  90. 90.
    Tsumoto, S. (ed.): Bulletin of International Rough Set Society (IRSS), vol. 1-6 (1997-2002),
  91. 91.
    Tsumoto, S., Kobayashi, S., Yokomori, T., Tanaka, H., Nakamura, A. (eds.): Proceedings of the The Fourth Internal Workshop on Rough Sets, Fuzzy Sets and Machine Discovery, November 6-8, University of Tokyo, Japan (1996)Google Scholar
  92. 92.
    Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.): RSCTC 2004. LNCS (LNAI), vol. 3066. Springer, Heidelberg (2004)MATHGoogle Scholar
  93. 93.
    Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.): RSFDGrC 2003. LNCS (LNAI), vol. 2639. Springer, Heidelberg (2003)MATHGoogle Scholar
  94. 94.
    Zhong, N., Liu, J. (eds.): Intelligent Technologies for Information Analysis. Springer, Heidelberg (2004)MATHGoogle Scholar
  95. 95.
    Ziarko, W.: Rough Sets, Fuzzy Sets and Knowledge Discovery: Proceedings of the Second International Workshop on Rough Sets and Knowledge Discovery (RSKD 1993), Banff, Alberta, Canada, October 12–15 (1993); Workshops in Computing. Springer–Verlag & British Computer Society, London, Berlin (1994)Google Scholar
  96. 96.
    Ziarko, W. (ed.): Special issue, Computational Intelligence: An International Journal 11(2) (1995)Google Scholar
  97. 97.
    Ziarko, W. (ed.): Special issue, Fundamenta Informaticae, 27(2-3) (1996)Google Scholar
  98. 98.
    Ziarko, W.P., Yao, Y. (eds.): RSCTC 2000. LNCS (LNAI), vol. 2005. Springer, Heidelberg (2001)Google Scholar
  99. 99.
    IFSA/IEEE Fifth Int. Conf. on Hybrid Intelligent Systems, Rio de Janeiro, Brazil (November 6-9, 2005),
  100. 100.
    IEEE/WIC/ACM Int. Conf. on Intelligent Agent Technology, Complègne University of Technology, France, September 19-22 (2005)Google Scholar
  101. 101.
    The 3rd Int. Conf. on Autonomous Robots and Agents, Palmerston North, New Zealand, December 12-14 (2006),
  102. 102.
    International Symposium on Methodologies for Intelligent Systems (ISMIS),
  103. 103.
    Information Processing and Management of Uncertainty (IPMU),

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • James F. Peters
    • 1
  • Andrzej Skowron
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of ManitobaWinnipeg, ManitobaCanada
  2. 2.Andrzej Skowron Warsaw University Institute of MathematicsBanacha 2Poland

Personalised recommendations